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Abstract 
Bernardo João Rota (2016): Calibration Adjustment for Nonresponse in 
Sample Surveys. Örebro Studies in Statistics 8. 

In this thesis, we discuss calibration estimation in the presence of nonre-
sponse with a focus on the linear calibration estimator and the propensi-
ty calibration estimator, along with the use of different levels of auxilia-
ry information, that is, sample and population levels. This is a four-
papers-based thesis, two of which discuss estimation in two steps. The 
two-step-type estimator here suggested is an improved compromise of 
both the linear calibration and the propensity calibration estimators 
mentioned above. Assuming that the functional form of the response 
model is known, it is estimated in the first step using calibration 
approach. In the second step the linear calibration estimator is con-
structed replacing the design weights by products of these with the in-
verse of the estimated response probabilities in the first step. The first 
step of estimation uses sample level of auxiliary information and we 
demonstrate that this results in more efficient estimated response proba-
bilities than using population-level as earlier suggested. The variance 
expression for the two-step estimator is derived and an estimator of this 
is suggested. Two other papers address the use of auxiliary variables in 
estimation. One of which introduces the use of principal components 
theory in the calibration for nonresponse adjustment and suggests a 
selection of components using a theory of canonical correlation. Princi-
pal components are used as a mean to accounting the problem of estima-
tion in presence of large sets of candidate auxiliary variables. In addition 
to the use of auxiliary variables, the last paper also discusses the use of 
explicit models representing the true response behavior. Usually simple 
models such as logistic, probit, linear or log-linear are used for this pur-
pose. However, given a possible complexity on the structure of the true 
response probability, it may raise a question whether these simple mod-
els are effective. We use an example of telephone-based survey data col-
lection process and demonstrate that the logistic model is generally not 
appropriate. 

Keywords: Auxiliary variables, Calibration, Nonresponse, principal 
com-ponents, regression estimator, response probability, survey 
sampling, two-step estimator, variance estimator, weighting. 

Bernardo João Rota, School of Business 
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This thesis consists of four papers:

• Rota, B. J. and Laitila, T. (2015) Comparisons of some weighting meth-
ods for nonresponse adjustment. Lithuanian Journal of Statistics, 54:1,
69–83.

• Rota, B. J. (2016). Variance Estimation in Two-Step Calibration for
Nonresponse Adjustment. Manuscript

• Rota, B. J. and Laitila, T. (2016) Calibrating on Principal Components
in the Presence of Multiple Auxiliary Variables for Nonresponse Adjust-
ment. This paper is accepted in South African Statistical Journal

• Rota, B. J. and Laitila, T. (2016). On the Use of Auxiliary Variables
and Models in Estimation in Surveys with Nonresponse. Manuscript
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Sample surveys have long been used as an effective means of obtaining infor-
mation about populations of interest. According to Särndal, et al. (1992) and
Rao (2003), the use of sample surveys gained emphasis from 1930 as time-
and cost-effective, although providing reliable information about the popula-
tion characteristics of interest through statistical inferences.

The reliability of the survey-based information depends upon how the to-
tal survey error is approached. Total survey error is the joint survey error
resulting from sampling and nonsampling errors, that is, survey errors due to
the use of a sample instead of the whole population and survey errors that
relate to how the data are collected and processed, respectively.

In the absence of nonsampling errors, basic statistical estimation methods
such as the Horvitz-Thompson estimators can yield reliable statistics that can
be used to make inferences. With nonsampling errors such as nonresponse,
these basic methods are no longer effective in producing reliable information.
These problems boosted the discovery of more sophisticated methods for pro-
duction of survey-based statistics. Among these methods is the use of auxiliary
information through weighting the observed values of the variables of interest.
Here, nonsampling errors are restricted to nonresponse errors.

When refering to weghting methods, it comes along with the calibration
weighting approach which is one of the fastest emerging weighting adjustment
methods. Calibration started as a procedure for improving the accuracy of
survey estimates in a full-response setting (see, Deville and Särndal, 1992 and
Deville, et al., 1993). In later advances, calibration also became a tool for
estimation in small domains or small areas (Chambers, 2005; Lehtonen and
Veijanen, 2012, 2015 ) and estimation in surveys with incomplete data due to
nonresponse (e.g. Lundström and Särndal, 1999). Observe that in complete-
data surveys, bias is not a concern; simple methods can yield unbiased es-
timation. Thus, in this context, variance is a concern. Under nonresponse,
accuracy is measured in terms of both bias and variance, with particular em-
phasis on the former.

Nonresponse, which is the failure to obtain data from a sampled unit,
will generally bias estimates, whatever the estimation method. In weighting
for nonresponse adjustment, the general setting is to view the response set
as a random subsample of the selected sample. The observed values of the
respondents are weighted, attempting to make the response set representative

Bernardo João Rota | 1
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of the original sample, in which case survey estimates can be used to make
reasonable inferences.

Consider a finite p opulation U c onsisting o f N u nits l abelled 1, ..., N . A
sample s of size n is drawn from U with a given probability sampling design
p(s) yielding first- and second-order inclusion probabilities π k> 0 and π kl> 0,
respectively, where πkk = πk for all kεU . The survey riable of int st is
y, and we are interested in estimating its total Y =

∑
U yk, where

∑
A =∑

kεA. Data are assumed to be observed for a subset r ⊂ s; each yk, kεr is
observed with probability Pr(Rk = 1|Ik = 1) > 0 where Rk = 1 if kεr and
Rk = 0 otherwise and Ik is defined a nalogously w hether k εs o r n ot. Here,
we assume that Rk and Rl are independent for all k �= l. Let xk be an L-
dimensional column vector of auxiliary variables known for all kεU and zk is
a J-dimensional vector of model variables known for all k in r. Assume that
Pr(Rk = 1|Ik = 1) = q(ztkg) evaluated at g = g◦, which is an interior point
of parameter space G.

Calibration estimators use weights wk that satisfy the calibration constraint∑
r wkxk = X, where X =

∑
U xk or X =

∑
s dkxk, that is, a population or

an estimated population total of xk, respectively. The weights wk in the linear
calibration estimators minimize a Chi-Square distance function (see, Kim and
Park, 2010). The resulting estimators have the following form:

ŶLC =

(∑
U

xk −
∑
r

dkxk

)t (∑
r

dkxkx
t
k

)−1 ∑
r

dkxkyk +
∑
r

dkyk (1)

where dk = π−1
k .

The propensity calibration (Chang and Kott, 2008) is an estimator of the
following form:

ŶPSC =
∑
r

dkq
−1(ztkĝ)yk (2)

where ĝ is a solution to the calibration constraint
∑

r dkq
−1(ztkg)xk =∑

U xk.

2 | Bernardo João Rota
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In this thesis, we discuss calibration estimation in the presence of nonresponse
with a focus on the linear calibration estimator (Särndal and Lundström, 2005)
and the propensity calibration estimator (Chang and Kott, 2008), along with
the use of different levels of auxiliary information, that is, sample and popula-
tion levels. This is a four-papers-based thesis, two of which discuss estimation
in two steps. The two-step-type estimator here suggested is an improved
compromise of both the linear calibration and the propensity calibration esti-
mators mentioned above. Assuming that the functional form of the response
model is known, it is estimated in the first s tep f ollowing t he p rinciple sug-
gested by Chang and Kott (2008). In the second step the linear calibration
estimator is constructed replacing the design weights by products of these with
the inverse of the estimated response probabilities in the first s tep. The first
step of estimation uses sample level of auxiliary information and we demon-
strate that this results in more efficient estimated response probabilities than
using population-level as suggested by Chang and Kott (2008). The resulting
two-step estimator is given by

Ŷ2step =

(∑
U

xk −
∑
r

gkxk

)t (∑
r

gkxkx
t
k

)−1 ∑
r

gkxkyk +
∑
r

gkyk (3)

where gk = dkq
−1(ztkĝ).

The variance expression for (3) is derived and an estimator of this is sug-
gested. Two other papers address the use of auxiliary variables in estimation.
One of which introduces the use of principal components theory in the calibra-
tion for nonresponse adjustment. Principal components are used as a mean
to accounting the problem of estimation in presence of large sets of candidate
auxiliary variables. In addition to the use of auxiliary variables, the last paper
also discusses the use of explicit models representing the true response behav-
ior. Usually simple models such as logistic, probit, linear or log-linear are
used for this purpose. However, given a possible complexity on the structure
of the true response probability (see Kaminska, 2013), it may raise a question
whether these simple models are effective. We use an example of telephone-
based survey data collection process and demonstrate that the logistic model
can be effective under very restrictive assumptions.

Bernardo João Rota | 3
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This paper proposes combining the linear calibration estimator (1) and the
propensity calibration estimator (2) in two steps of estimation. That is,
we suggest improving the linear calibration estimator by a preliminary ad-
justing of design weights through multiplication of these with reciprocals of
calibration-estimated response propensities. The resulting two-step-based cal-
ibration estimator given in (3) is compared with some single step nonresponse
adjusted estimators and a two-step estimator with maximum likelihood-
estima-ted response probabilities in the first step.

Asymptotic variance expressions for the model parameter estimator are
derived for both the sample and population levels of auxiliary information.
These expressions illustrate that the model parameter estimates have smaller
variance when sample level auxiliary information is used rather than popula-
tion level. This paper also addresses issues related to the choice of auxiliary
variables by assessing the effect of different correlation relationships between
auxiliary, model and study variables.

Numeric illustrations were based on real survey data. Three simulation sets
were defined using three criteria. The first criterion addressed the es-timator’s
performance in relation to the quality of auxiliary variables, the second
criterion addressed the effect of the sample size, and the last focuses on the
effects of model misspecification. We did not find any strongly corre-lated pair
of variables, the maximum correlation between pairs of the chosen variables
was 0.649. Nevertheless, we believe that the results obtained are illustrative of
the simulation objectives.

Among the results obtained are that two-step estimators are more efficient
than any single step estimator, with maximum likelihood-based two step be-
ing fairly competitive with the calibration-based two-step estimator. Still
good auxiliary variables are necessary especially for the linear calibration, an
estimator that tend to be more penalized with the choice of poor auxiliary
variables. The population level of auxiliary information provides more pro-
tection under model misspecification than does the sample level. The linear
calibration estimator tend to be competitive with increasing sample size and
use of good auxiliary variables.

4 | Bernardo João Rota
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Remark 1: The results displayed in some tables, in particular tables
2,3,7 and 8 for the linear calibration estimator are abnormal, which is a result
of some extreme weights in the simulation. This result confirms o n e o f the
features of this estimator, which is documented on page 59, remark 6.1 in
Särndal and Lundström (2005). The estimator would have performed better
if it were assigned a weight restriction.

Remark 2: This paper uses notations Ŷ2stepA and Ŷ2stepB. These nota-
tions are only used to distinguish that the former uses sample level auxiliary
information in the first step of estimation and population level in the second
step, whereas the latter uses the sample level auxiliary information in both
steps. Thus, these notations should not be confused with estimators defined
by Särndal and Lundström (2005), who use the same notation.

Note: for further clarification of text in paper 1 see the appendix section
below.

Paper 1 combines linear calibration and propensity calibration estimators and
constructs an alternative estimator of the total Y of a survey variable y by
means of two-step estimation in the presence of sample- and population-level
auxiliary information under the assumption of a known functional form of the
response mechanism.

In this paper, a variance expression for the two-step estimator is derived
and an estimator of this is suggested. The variance expression has an extra
component that accounts for model parameter estimation in the first step.
We show that the reduced variability due to the use of sample-level auxiliary
information in the estimation of model parameters in the first step, which has
been demonstrated in paper 1, implies reduced variance in the estimation of
population characteristics.

The numerical illustration for the properties of the suggested estimator is
based on two simulation setups, one of which is on real survey data whereas
another is on simulated data. Simulation results suggest that the estimator
performs well when good auxiliary variables are used. For large sample sizes
and good auxiliary variables, the extra component in the variance expression
has negligible contribution to the variance of population characteristics.

Remark: The variance and variance estimator developed in this paper is
relative to the two-step calibration estimator suggested in paper 1. However,

Bernardo João Rota | 5



www.manaraa.com

it is not clearly stated which estimator is being referenced in paper 1. We use

here the notation Ŷ2step, which refers to Ŷ2stepA in the notation of paper 1.

When adjusting for nonresponse in sample surveys, auxiliary information
has important role in successful estimation. This has been noted by Rizzo,
Kalton and Brick (1996), who claim that the choice of auxiliary variables
may be of greater significance than the choice of the weighting method.

This implies that the lack of auxiliary variables to assist in estimation is
undesired. Conversely, large sets of auxiliary variables being available, can
also bring problems such as strong correlation or multicollinearity among the
variables which might result in an increased standard error of the estimated
statistics. Another problem is the difficulty in selecting auxiliary variables
related to a number of study variables simultaneously.

Thus, in accounting for these problems, we suggest reducing the dimen-
sionality of the auxiliary data using principal components. The standard data
variation is nearly maintained but in lower dimensional data.

We implement a rejection of principal components based on their canon-
ical correlation with the model variables. The rejection based on canonical
correlation is advantageous when samples are of small sizes whilst in large
samples the results are similar to the obtained using the eigen-value-one stop-
ping criterion of the principal components theory.

Simulation results confirmed that the u se o f p rincipal c omponents i s effec-
tive both in the linear calibration and in the propensity calibration estimators.

Because the use of principal components auxiliary data is effective in esti-
mation, the variance expression and the variance estimator derived in paper 2
can be adapted to use these dimension-reduced auxiliary data. However, this
is left as a topic for future research.

This paper has been accepted for publication in South African Statistical
Journal (Rota and Laitila, 2017)

6 | Bernardo João Rota
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In weighting for nonresponse adjustment, the general framework is to charac-
terize the response set as a random realization from a selected sample. This
approach resembles estimation in two-phase sampling (e.g. Keen, 2005). In
one version, the estimation is performed with explicit modelling of the re-
sponse propensity whereas another version provides implicit modelling.

In papers 1 to 3, we use the linear calibration estimator, which is a case of
implicit modelling of the response probability and the propensity calibration
estimator illustrating explicit modelling.

Both weighting alternatives rely on the use of powerful auxiliary variables.
A question rarely raised in the literature can be formulated as follows: how does
weighting affect estimates if the response set mean is unbiased? One potential
reason for this problem not being addressed is the adaptation of concepts on the
relationship between the study variable and the generation of the response set
from the model-based inference literature, e.g., MAR (miss-ing at random) and
MCAR (missing completely at random).

Conditional on these auxiliary variables, the data are assumed to be miss-
ing at random. However, as with any other such missingness mechanism, this
one cannot be tested statistically (Thoemmes and Rose, 2014). This problem
leads to selection of auxiliary variables based on the correlation relationships
they share with the variables of interest and the response behavior. We show
here that such a guiding rule for selection of auxiliary variables can lead in a
wrong direction, that is, we can increase rather than reduce the bias.

Furthermore, response mechanisms can be of complex structure, and ap-
plications tend to use simple models such as logit, probit or exponential in rep-
resenting the true response mechanism (see e.g. Chang and Kott, 2008; Kim
and Riddles, 2012; Haziza and Lesage, 2016). One might question whether it
is appropriate to use such simple models. With an example of telephone-based
survey data collection, we show that a logit model conditional on restrictive
assumptions can be a valid choice. However, these models are not realistic in
general, and better models reflecting the data collection process are needed.
In addition to this, there is a need to develop tools to judge when the use
auxiliary variables give valid estimates.

Bernardo João Rota | 7
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Appendix
Clarification of text in paper 1

1. On page 71 and thereafter, dk is used as design weight for element k,
whereas d(·), e.g., in equation 7, is a function.

2. On page 71, the D used in equation 8 cannot be confounded with D
(boldfaced) on page 74.

3. On page 72, c. The linear calibration estimator.

The linear calibration estimator is defined with weights wk = dkvk,
where vk = 1 + λt

rzk and λt
r = (X−∑

r dkxk)
t
(
∑

r dkzkx
t
k)

−1. How-
ever, the simulations are held using the standard definition (Särndal and
Lundström, 2005, p. 62), that is, the vector zk is replaced by xk leading
to vk = 1 + λt

rxk and λt
r = (X−∑

r dkxk)
t
(
∑

r dkxkx
t
k)

−1.

4. On page 74 line 3 after equation 20, replace the word “rewrite” with
“redefine”.

5. On page 74 line 1 after equation 23, replace the words “is illustrated by”
with “follows from”.

6. On Tables 1–9, we use Ŷ2stepA and Ŷ2stepB without a clear distinction
between them. The former uses sample-level auxiliary information in
the first step and population-level in the second step whereas the latter
uses sample level in both steps.

Bernardo João Rota | 9
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1. Introduction

Weighting is widely applied in surveys to adjust for nonresponse and correct other nonsampling errors.
The literature contains many different proposals for nonresponse weighting methods. These methods
usually treat the set of respondents as a second-phase sample [2], the elements of the response set
being tied to a twofold weight compensating for both sampling and nonresponse. These weights, in
particular those for nonresponse adjustment, are constructed with the aid of auxiliary information.

Treating the response set as a random subset of the sample set justifies associating each respondent
with a probability of being included in the response set. Estimating this probability with aid the of
auxiliary information and multiplying it by the sample inclusion probability gives an estimate of the
probability of having a unit in the response set. The observations of target variable values are weighted
by the reciprocals of these estimated probabilities and summed over the set of respondents, giving an
estimated population total. This is known as direct nonresponse weighting adjustment [13]. One
example of this method is the cell weighting approach described by [11].

Alternatively, the auxiliary information is incorporated into the estimation such that the second-
phase weight adjustments are determined implicitly. Such estimators are known as nonresponse weight-
ing adjustments (see [12]), and one example is the calibration method suggested by [18]. [5] combine
the two approaches. They assume the response probability function to be known, and calibration
serves as the means of estimating the parameters of this function. Once the parameters have been
determined, the inverse of the estimated response probabilities are used as nonresponse adjustment
factors.

The main feature of the calibration approach is to make the best use of available auxiliary infor-
mation. When the response mechanism is assumed to be known and of the form p(·;g), parameter g
is deemed a nuisance parameter [14]; this means that, although the information associated with its
estimator ĝ is important, the primary objective is to estimate the target, say, the total Y = ∑U yk.
Using calibration to estimate the unknown parameters confers a different meaning on the estimation
problem, in the sense that auxiliary variables are selected to provide good auxiliary information for
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response probability model. Results also suggest a two-step procedure, using sample information for model coefficient estimation in
the first step and calibration estimation of the study variable total in the second step.
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1. Introduction

Weighting is widely applied in surveys to adjust for nonresponse and correct other nonsampling errors.
The literature contains many different proposals for nonresponse weighting methods. These methods
usually treat the set of respondents as a second-phase sample [2], the elements of the response set
being tied to a twofold weight compensating for both sampling and nonresponse. These weights, in
particular those for nonresponse adjustment, are constructed with the aid of auxiliary information.

Treating the response set as a random subset of the sample set justifies associating each respondent
with a probability of being included in the response set. Estimating this probability with aid the of
auxiliary information and multiplying it by the sample inclusion probability gives an estimate of the
probability of having a unit in the response set. The observations of target variable values are weighted
by the reciprocals of these estimated probabilities and summed over the set of respondents, giving an
estimated population total. This is known as direct nonresponse weighting adjustment [13]. One
example of this method is the cell weighting approach described by [11].

Alternatively, the auxiliary information is incorporated into the estimation such that the second-
phase weight adjustments are determined implicitly. Such estimators are known as nonresponse weight-
ing adjustments (see [12]), and one example is the calibration method suggested by [18]. [5] combine
the two approaches. They assume the response probability function to be known, and calibration
serves as the means of estimating the parameters of this function. Once the parameters have been
determined, the inverse of the estimated response probabilities are used as nonresponse adjustment
factors.

The main feature of the calibration approach is to make the best use of available auxiliary infor-
mation. When the response mechanism is assumed to be known and of the form p(·;g), parameter g
is deemed a nuisance parameter [14]; this means that, although the information associated with its
estimator ĝ is important, the primary objective is to estimate the target, say, the total Y = ∑U yk.
Using calibration to estimate the unknown parameters confers a different meaning on the estimation
problem, in the sense that auxiliary variables are selected to provide good auxiliary information for
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estimating the parameters with good precision. This will in turn imply good precision for the estimates
of response probabilities. Thus, when the response probability function is known, our principle is to
view the problem of estimation in two distinct moments: estimation of parameters and estimation of
targets respectively.

As noted in [4], the probabilities to respond are usually functions of the sample and survey condi-
tions, that is, the response probability for a specific individual may change when the survey conditions
also well change (see also [3]). However, the mechanism leading to response/nonresponse for a sampled
individual is generally not known [14]. Thus, estimation in the presence of nonresponse requires some
kind of modeling, explicitly or implicitly (see [5]). An implicit modeling for nonresponse adjustment
can be found in [1], while [12] gives an example of explicit modeling. This paper considers nonre-
sponse adjustment methods when the response probability function is assumed to be known up to a
set of unknown coefficients. Under this assumption, direct weighting estimators can be used when
the response probability model is estimated using, for example, the maximum likelihood estimator.
An alternative here is to estimate the response probability model using calibration, as suggested by
[5]. This calibration estimator requires only the values of the covariates in the response model for the
sample units in the response set, while maximum likelihood needs the values of those variables for the
whole sample. One issue considered is the level of information used in calibration. An option is to
use either sample or population level information when calibrating for response probability coefficient
estimates. This paper contributes by demonstrating that the asymptotic variance of the coefficient
estimator is smaller when sample level information is used. A simulation study is performed in order
to investigate the properties of the estimators for small sample sizes. We also suggest a two-step pro-
cedure in which sample level information is used for response probability model estimation in the first
step, and population level information is used for estimating population characteristics in the second
step. Furthermore, the importance of correlating auxiliary variables with model and study variables
is addressed.

The simulation study performed is based on data from a survey on real estate, and the bias and
variance properties of the estimators are considered. Several estimators are studied, including the
Horvitz-Thompson (HT) estimator using true model coefficients, direct weighting using maximum
likelihood (ML) estimates of coefficients, and calibration-estimated coefficients, where calibration uses
sample or population information. Two-step estimators using ML-estimated and calibration-estimated
coefficients, respectively, are included, as is the linear calibration (LC) estimator [21].

The estimators studied are introduced in the next section. Section 3 compares the variance of the
model parameter calibration estimators when based on population and sample level information. The
results of a simulation study are reported in Section 4, and a discussion of the findings is saved for
the final section.

2. Estimators under nonresponse

Sample s of size n is drawn from the population U = {1,2, ...,k, ...,N} of size N using a probability
sampling design, p(s), yielding first and second order inclusion probabilities πk = Pr(k ∈ s) > 0 and
πkl = Pr(k, l ∈ s)> 0, respectively, for all k, l ∈U . Let r ⊂ s denote the response set. Units in the sam-
ple respond independently with a probability pk = Pr(k ∈ r |k ∈ s)>0, for the known functional form
pk = p(zt

kg) evaluated at g = g∞, an interior point of the parameter space g ∈ G, and zk is a vector
of model variables. Both g and zk are column vectors of dimension K. Furthermore, we assume that
conditional on the auxiliary variables, the response probability is independent of the survey variable
of interest, which is known as MAR assumption (e.g. [23]). Define the indicators:

Ik =

{
1 i f k ∈ s
0 else

and Rk =

{
1 i f k ∈ r|Ik = 1
0 i f k /∈ r|Ik = 1

.

The survey variable of interest is y, and its population total, Y = ∑U yk, is to be estimated. We can
then construct an estimator for Y of the form:

ŶW = ∑
r

wkyk. (1)
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The weights, wk, can be defined in various ways but usually have the form wk = dkvk, where dk = 1/πk
is the design weight and vk is a factor adjusting for example, for nonresponse. These factors make use
of auxiliary information. The auxiliary vector is xk, with dimension P×1, where P ≥ K and X = ∑U xk
denotes its population total.

a. Direct nonresponse weighting adjustment

One alternative of weights wk in (1) is given by wk = dkh(zt
kĝ), where h(·) = p−1(·) and ĝ is an estimator

of g∞. Assume p(zt
kg) to be differentiable w.r.t. g and define the weighted log likelihood function of

the response distribution

l(g) = ∑
s

dk
[
Rkln

(
p(zt

kg)
)
+(1−Rk)ln

(
1− p(zt

kg)
)]
. (2)

The first order conditions for the maximum likelihood estimator (MLE) are given by

∂l(g)
∂g

= ∑
s

dk

(
Rk − p(zt

kg)
p(zt

kg)(1− p(zt
kg))

· ∂p(zt
kg)

∂g

)
= 0. (3)

The first order conditions in (3) are nonlinear in g in general, and a numerical optimization method,
such as the Newton-Raphson algorithm, is required to obtain the desired ĝML. Observe that ∂l(g)

∂g
results in a K-dimensional column vector of partial derivatives, each with respect to one component
of g. For matrix derivations, see [19].

With a calculated ĝML, the estimator (1) takes the form

ŶDN−ML = ∑
r

dkh(zt
kĝML)yk (4)

where the subscript (DN_ML) stands for direct nonresponse weighting by ML. This estimator is
asymptotically unbiased for the population total Y under the assumptions established for Theorem 1
by [13].

b. The propensity score calibration estimation

[5] propose a calibration direct nonresponse adjusted estimator (1), where the weights wk are the
products of the design weight and the reciprocal of the estimated response probability p(zt

kĝCAL) for
the element k in r, i.e., wk = dkh(zt

kĝCAL), so that the estimator (1) becomes

ŶW = ∑
r

dkh(zt
kĝCAL)yk. (5)

This estimator is similar to (4) in form but makes use of calibration for the estimation of g∞ instead
of ML. The strategy is to estimate g∞ using the solution to the calibration equation

X = ∑
r

dkh(zt
kg)xk (6)

Assuming h(zt
kg) to be twice differentiable, [5] suggest an estimator defined by minimizing an objec-

tive function derived from (6), assuming the difference e = X−∑r dkh(zt
kg∞)xk to be asymptotically

normal distributed. Here, we do not impose normality assumption and derive their estimator slightly
differently.

Assume that P ≥ K and define the distance function as

d(g) =

(
X−∑

U
IkdkRkh(zt

kg)xk

)
(7)

Let Σn be a P×P symmetric nonnegative definite matrix converging in probability to the positive
definite matrix Σ, when the sample size grows arbitrarily large. Construct a weighted quadratic
distance as follows:

D(g) = 2−1dt(g)Σnd(g) (8)
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kĝCAL), so that the estimator (1) becomes
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Then, the [5] estimator of g∞ is defined as the minimizer of (8). Note that this estimator is a generalized
method of moments (GMM) estimator, where minimizing (8) entails solving the estimating equations
([7], p. 378)

dt(g)Σnd(g) = 0 (9)

that results in the equation
ĝc1 = ĝc0 − (dt(ĝc0)Σnd(ĝc0))

−1dt(ĝc0)Σnd(ĝ0) (10)

after an initial guess ĝc0
where,

d(g) =−∂d(g)
∂g

= ∑
U

IkdkRkh̃(zt
kg)xkzt

k (11)

h̃(a) is the first derivative of h(a) and d(g) is assumed to be of full rank. Section 3 provides some
details in the derivation of (10).

The [5] propensity calibration estimator is obtained upon the convergence of (10) and is given by:

ŶPS = ∑
r

dkh(zt
kĝc1)yk (12)

c. The linear calibration estimator
The LC estimator is defined as the estimator (1) with the weights, wk, satisfying the calibration
constraint

∑
r

wkxk = X (13)

where wk = dkvk, vk = 1+λt
rzk, and zk is a variable vector with the same dimension as xk. zk is assumed

known at least up to the set of respondents and is called an instrument vector if it differs from xk.
This system yields the vector λt

r = (X−∑r dkxk)
t (∑r dkzkxt

k

)−1. The linear calibration estimator for the
total Y is then given by

ŶLC = ∑
r

dkvkyk = ∑
r

wkyk (14)

In this setting, no explicit modeling for response or outcome is required. Instead, the method relies
on the strength of the available auxiliary information. Although this is not the basic tenet, the vk
factor gives the impression of a linear approximation of the reciprocal of the response probability in
the sense that a good linear approximation of h(zt

kg) brings about a linear calibration estimator with
good statistical properties (see [15]).

d. The two-step calibration estimator
[21] describe the two-step calibration approach. The first- and second-step weights are constructed
according to the principle of combining population and sample levels auxiliary information. In the
first step, sample level information is used to construct preliminary weights, w1k, such that ∑r w1kxs

k =

∑s dkxs
k, where xs

k is a J-dimensional column vector of auxiliary variables with known values for all
sampled units. In the second step, weights w1k replace the design weights in the derivation of the
single step calibration estimator (14), and the final weights, wk, satisfy ∑r wkxk = X. Here, X = ∑U xU

k if

xk = xU
k or X =

(
∑U xU

k
∑s dkxs

k

)
if xk =

(
xU

k
xs

k

)
, with xU

k being a P-dimensional column vector of auxiliary

variables with known values for all respondents; moreover, their population totals are also known.
[16] also suggest a two-step calibration estimation assuming the known functional form of the

response mechanism. The estimation process is conceptually different from the one suggested in [21],
where the second-step weights are based on the first-step weights. The prediction approach supports
the estimation setting suggested by [16].

Here, the concept of two-step estimation is implemented differently to ([21], p. 88). As in [16], we
assume a specified response mechanism, p(zt

kg), where initial weights are calculated as w1k = dkh(zt
kĝ)

after calculating ĝ. Depending on whether the auxiliary vector zk is known up to the response set or
the sample gives different options for the estimators of the true value of g. For example, if zk is known

Bernardo João Rota, Thomas Laitila
73

up to the sample level, then ĝ may be the MLE. If zk is known only up to the response set level, ĝ is
estimated using calibration against sample level information, i.e., ∑s dkxk = ∑r dkh(zt

kg)xk.

In the second step, the population auxiliary data are employed for estimating targets. That is, the sec-
ond step weights, wk, are given by wk =w1kvk with vk = 1+λt

2xk and λt
2 = (X−∑r w1kxk)

t (∑r w1kxkxt
k

)−1.

3. Asymptotic variance of the estimated response model parameters

[12] and [13] provide analytical and empirical justification for the efficiency gain when using estimated
response probabilities in place of the true response probabilities, proving what had been noted by
[20], namely, the estimated probabilities outperform true probabilities. [12] and [13] demonstrate this
feature in a context of direct and regression adjustments where the scores are estimated using an ML
procedure. This efficiency gain by using estimated probabilities can be interpreted as resulting from
the lack of the location-invariance property of the HT estimator (e.g. [9], p. 10). Using true response
probabilities, observations are given weights equal to the reciprocal of the probability of having the
unit in the response set. However, the size of the response set is random due to nonresponse, meaning
that it is not location invariant. When using ML-estimated response probabilities, estimates satisfy
moment conditions at the sample level. This can be expected to reduce variance but will not in general
yield an invariance property.

Similar to the difference between true and estimated response probabilities, the difference between
population and sample level information in the calibration estimator is considered. The precision of
model parameters can be expected to affect the precision of target variable estimates. Here precision
is auxiliary information dependent. As noted in [4] and [24], the strength of the relationships between
the auxiliary variables and the response probabilities or study variables is crucial for the efficient
performance of the weighting adjustment methods. Auxiliary information may be available at different
levels, such as the population or sample levels [8]. Under nonresponse, this auxiliary information is
used for correcting nonresponse bias and reducing the variance of the estimator. In particular, as [23]
states, sample level information is suited for nonresponse adjustment rather than variance reduction,
because nonresponse affects only the location of means and not their variation.

According to the quasi-randomization setup, response set generation is an experiment made con-
ditional on the sample. On the other hand, calibrating weights against population level information
means that estimation is made unconditional on the sample. Calibration based on sample level infor-
mation is therefore expected to yield more efficient estimators of response probability parameters.

Reformulating the calibration equation as

X−∑
r

wkxk =

(
X−∑

s
dkxk

)
+

(
∑

s
dkxk −∑

r
wkxk

)
,

illustrates that calibration against population level information brings a source of uncertainty that
does not depend on the response probability distribution, i.e., variation due to the first phase sampling
represented by the first term of the right-hand side of this equation. Calibrating against sample level
information excludes this term, and the single source of randomness involved is the one defined by the
conditional response distribution.

For more formal results, assume the asymptotic framework in which both the sample and pop-
ulation sizes are to increase to infinity (see, [10]), and assume further that the minimizer of (8) is
consistent.

Using result 9.3.1 in [22], the covariance matrix of d(g) evaluated at the true value g = g∞ is given
by

E
(
d(g∞)dt(g∞)

)
= Π1+Π2 =Π (15)

where, E(d(g∞)) = 0, Π1 = ∑k∈U ∑l∈U
πkl−πkπl

πkπl
xkxt

l and Π2 = ∑U
(h(zt

kg∞)−1)
πk

xkxt
k, with the expectations

being taken jointly with respect to the sampling design p(s) and the response distribution p(zt
kg).
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population and sample level information in the calibration estimator is considered. The precision of
model parameters can be expected to affect the precision of target variable estimates. Here precision
is auxiliary information dependent. As noted in [4] and [24], the strength of the relationships between
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Reformulating the calibration equation as
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X−∑

s
dkxk

)
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∑

s
dkxk −∑

r
wkxk

)
,

illustrates that calibration against population level information brings a source of uncertainty that
does not depend on the response probability distribution, i.e., variation due to the first phase sampling
represented by the first term of the right-hand side of this equation. Calibrating against sample level
information excludes this term, and the single source of randomness involved is the one defined by the
conditional response distribution.

For more formal results, assume the asymptotic framework in which both the sample and pop-
ulation sizes are to increase to infinity (see, [10]), and assume further that the minimizer of (8) is
consistent.

Using result 9.3.1 in [22], the covariance matrix of d(g) evaluated at the true value g = g∞ is given
by

E
(
d(g∞)dt(g∞)

)
= Π1+Π2 =Π (15)

where, E(d(g∞)) = 0, Π1 = ∑k∈U ∑l∈U
πkl−πkπl

πkπl
xkxt

l and Π2 = ∑U
(h(zt

kg∞)−1)
πk

xkxt
k, with the expectations

being taken jointly with respect to the sampling design p(s) and the response distribution p(zt
kg).



www.manaraa.com

74
Comparisons of some weighting methods for nonresponse adjustment

Consider equation (9) with g replaced by its solution ĝ, and apply the mean value theorem to
decompose d(ĝ), obtaining the following equation:

d(ĝ) = d(g∞)+d(ḡ)(ĝ−g∞) . (16)

Then, we can substitute d(ĝ) in (9) by the r.h.s of (16) and get:

dt(ĝ)Σd(g∞)+dt(ĝ)Σd(ḡ)(ĝ−g∞) = 0 (17)

where, ḡ lies in the segment between ĝ and g∞.
We can rewrite (17) as:

(ĝ−g∞) =−(
n−1dt(ĝ)Σnn−1d(ḡ)

)−1
n−1dt(ĝ)Σn

(
n−1d(g∞)

)
(18)

Under appropriate assumptions, we have that d(ĝ)−d(g∞) = op(1). Let, D = plimn→∞n−1d(a), where
a stands for ĝ, ḡ or g∞. We replace d in (17) by its corresponding limit and obtain the asymptotic
variance of the estimated model parameters as:

Avar (
√

n(g∞ − ĝ)) = Avar
(
[DtΣD]−1 DtΣ

√
n(n−1d(g∞))

)

= [DtΣD]−1 DtΣΠΣD [DtΣD]−1
(19)

where Π is the probability limit of n−1E (d(g∞)dt(g∞)).
The choice of Σ = Π−1 yields

Avar
(√

n(ĝ−g∞)
)
=
[
DtΠ−1D

]−1
(20)

which is equivalent to expression (9.80) in [7]. Observe that equation (10) results from (17) after
replacing d(a) with the computable entity d(ĝc0) = ∑r dkh(zt

kĝc0)xk.
Now, for calibration at the sample level, rewrite equation (7) as

ds(g) =
(

∑
s

dkxk −∑
s

dkRkh(zt
kg)xk

)
. (21)

The conditional expectation of ds(g∞) with respect to the response distribution is zero. This implies
that the covariance (15) in this case is Π2 = ∑U

(h(zt
kg∞)−1)
πk

xkxt
k, since Π1 = 0. Then, with arguments

similar to those that led to (20) results in asymptotic variance of the response model parameters given
by

Avar
(√

n(ĝs −g∞)
)
=
[
DtΠ−1

2 D
]−1

. (22)

The additional asymptotic variance introduced by calibrating against population level instead of sam-
ple level information is expressed by the difference

[
Dt (Π1 +Π2)

−1 D
]−1

− [
DtΠ−1

2 D
]−1

> 0 (23)

The positive definiteness of the difference (23) is illustrated by the positive definiteness of the difference[
DtΠ−1

2 D
]−

[
Dt (Π1 +Π2)

−1 D
]
> 0 (see [6]). This is equivalent to demonstrating that

Π−1
2 − (Π1 +Π2)

−1 > 0 (24)

because Π1 and Π2 are both positive definite matrices, unless h(zt
kg∞) = 1 for all elements in the

population, and D is a full rank matrix as a consequence of (11). Observe that proving (24) is in turn
equivalent to demonstrating that (Π1 +Π2)−Π2 > 0. Thus, inequality (23) follows.
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4. Simulation study

Under assessment are the estimators described in points “a” to “d”: the direct nonresponse weighting
adjustment (a), the propensity score calibration estimator (b), the linear calibration estimator (c),
and the two-step calibration estimator (d). We used data from a real case study with 4228 sampled
elements, of which 1783 were nonrespondents. A two-covariate logistic regression was fitted based
on this data and used as the true response probability model in the simulations. Next, we created
a synthetic population based on the 2445 respondents to the survey; samples were drawn from this
population, after which a response set was generated using the estimated response probability model.

Five variables were selected for the study, one categorical and the others numerical. The nu-
merical variables were transformed into logarithmic scales to reduce variability. The categorical
variable, denoted γ, was a stratum indicator in the original study having six strata, thus, γk =
(γ1k,γ2k,γ3k,γ4k,γ5k,γ6k), where γik = 1Si(k) and Si is the ith stratum. Figure 4 presents the relation-
ship among the original quantitative variables transformed into logarithmic form. One of them, left
untransformed, was chosen to be study variable y, and estimation concerns estimating the population
total Y = 17014, having the three auxiliary variables v1, v2, and v3.

Figure 1: Pairwise correlations among the original variables used in the simulation study. Correlations calcu-
lated on the set of synthetic population.

Two additional quantitative auxiliary variables, va and vb, were created based on the equations
va =

√
(v2

2 + v2
1)/v3

3 and vb = 5
√

v6
1/v2. The variables were created in an attempt to control for the

strength of the relationship between the auxiliary variables, the study variable, and the model variables
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We can rewrite (17) as:
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untransformed, was chosen to be study variable y, and estimation concerns estimating the population
total Y = 17014, having the three auxiliary variables v1, v2, and v3.
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in the response probability function. These new variables give correlation relationships not covered
by the original auxiliary variables. Figure 4 shows plots of the new variables.

Figure 2: Pairwise correlations among artificial and original variables. Correlations calculated on the set of
synthetic population.

Three simulation sets were defined using three criteria. The first criterion addresses the estima-
tor’s performance in relation to the quality of auxiliary variables, the second criterion addresses the
effect of the sample size, and the last focuses on the effects of model misspecification. The response
probability function is defined by the logistic regression model p(Rk = 1|k ∈ s) = 1/

(
1+ exp(−zt

kg)
)
,

where zk = (1,v1k)
t and the parameter values are defined by their ML fit to the original 4228 obser-

vations. The samples were selected using simple random sampling without replacement followed by
Poisson sampling, in which the probability used for each Bernoulli trial was the one obtained using
the response model. Each simulation result was based on 1000 replications. Initial trials with higher
numbers of replications produced similar results. All estimators under study used the same samples
and same response sets. The expected response rate was approximately 57%. The estimators are
evaluated in terms of the relative bias (RB), standard error (SE) and mean squared error (MSE).

4.1. Simulation results

4.1.1 Correctly specified response probability model

Tables 1 – 3 present the results with the model vector defined as zk = (1,v1k)
t . In Table 1, the

auxiliary vector is defined as xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t , a setup treated as the base case. As

Bernardo João Rota, Thomas Laitila
77

seen in Figure 4, the auxiliary variable, v2, correlates well with both the model variable and the study
variable. A similar auxiliary vector was defined for the results in Table 2, with the exception that v3
replaces v2, that is, xk = (γ1k, ...,γ6k,γ1kv3k, ...,γ6kv3k)

t . Here the auxiliary variable has a moderate level
of correlation with the study variable, but carries much less information on the variation of the model
variable in the response probability function. The correlations of v3 with v1 is approximately 0.16,
with y approximately 0.59.

Again a similar auxiliary vector as in Table 1 was used for the results in Table 3, but here va is
used in place of v2, i.e. xk = (γ1k, ...,γ6k,γ1kvak, ...,γ6kvak)

t . The auxiliary variable va has approximately
moderate correlation with the model variable (0.45) but low correlation with the study variable (0.04).
The purpose of the simulation setup in tables 1 – 3 is partly to enable the study of the differences in
the effect of having a good auxiliary variable for the model variable and the study variable respectively.

Table 1: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.150,-0.137) (2.640,0.077) 51,201 226 -0.042
ŶPS_samp (1.168,-0.142) (1.220,0.035) 50,708 225 -0.053
Ŷ2stepML – – 24,495 155 -0.137
Ŷ2stepA – – 24,727 155 -0.166
Ŷ2stepB – – 39,566 196 -0.196
ŶLC – – 191,835 438 -0.113

Table 2: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v3kγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.048,-0.106) (8.439,0.247) 185,033 430 0.090
ŶPS_samp (0.952,-0.099) (3.665,0.106) 112,337 334 -0.160
Ŷ2stepML – – 33,240 179 -0.192
Ŷ2stepA – – 36,517 177 -0.429
Ŷ2stepB – – 45,422 205 -0.342
ŶLC – – 14.09×108 11872 -0.599

In tables 1 – 3, one can observe that the use of true probabilities (ŶDNTrue) leads to estimated targets
with larger variability than that of the estimated targets obtained using ML-estimated probabilities
(ŶDN_ML). Observe that the standard error when using true probabilities is 872, which is four times
more than the standard error when using estimated probabilities. Note that the results for these two
estimators are the same over all three tables, because they are not defined by the benchmark variables
used.

As predicted by the results in Section 3, the variance for the calibration estimator of the model
coefficients is smaller when sample level information is used rather than population level information.
This is observed in all three tables. Also, as expected, the ML estimator is associated with the
smallest variance estimates, except the two-step estimators. The results also indicate that the variance
decreases with increased correlation between the model and auxiliary variables; the variance estimates
are the highest in Table 2. However, the comparison of tables 1 and 3 indicates that the correlation
is not the only determinant of variance.
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in the response probability function. These new variables give correlation relationships not covered
by the original auxiliary variables. Figure 4 shows plots of the new variables.
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where zk = (1,v1k)
t and the parameter values are defined by their ML fit to the original 4228 obser-

vations. The samples were selected using simple random sampling without replacement followed by
Poisson sampling, in which the probability used for each Bernoulli trial was the one obtained using
the response model. Each simulation result was based on 1000 replications. Initial trials with higher
numbers of replications produced similar results. All estimators under study used the same samples
and same response sets. The expected response rate was approximately 57%. The estimators are
evaluated in terms of the relative bias (RB), standard error (SE) and mean squared error (MSE).

4.1. Simulation results

4.1.1 Correctly specified response probability model

Tables 1 – 3 present the results with the model vector defined as zk = (1,v1k)
t . In Table 1, the

auxiliary vector is defined as xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t , a setup treated as the base case. As
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variable. A similar auxiliary vector was defined for the results in Table 2, with the exception that v3
replaces v2, that is, xk = (γ1k, ...,γ6k,γ1kv3k, ...,γ6kv3k)

t . Here the auxiliary variable has a moderate level
of correlation with the study variable, but carries much less information on the variation of the model
variable in the response probability function. The correlations of v3 with v1 is approximately 0.16,
with y approximately 0.59.

Again a similar auxiliary vector as in Table 1 was used for the results in Table 3, but here va is
used in place of v2, i.e. xk = (γ1k, ...,γ6k,γ1kvak, ...,γ6kvak)

t . The auxiliary variable va has approximately
moderate correlation with the model variable (0.45) but low correlation with the study variable (0.04).
The purpose of the simulation setup in tables 1 – 3 is partly to enable the study of the differences in
the effect of having a good auxiliary variable for the model variable and the study variable respectively.

Table 1: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.150,-0.137) (2.640,0.077) 51,201 226 -0.042
ŶPS_samp (1.168,-0.142) (1.220,0.035) 50,708 225 -0.053
Ŷ2stepML – – 24,495 155 -0.137
Ŷ2stepA – – 24,727 155 -0.166
Ŷ2stepB – – 39,566 196 -0.196
ŶLC – – 191,835 438 -0.113

Table 2: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v3kγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.048,-0.106) (8.439,0.247) 185,033 430 0.090
ŶPS_samp (0.952,-0.099) (3.665,0.106) 112,337 334 -0.160
Ŷ2stepML – – 33,240 179 -0.192
Ŷ2stepA – – 36,517 177 -0.429
Ŷ2stepB – – 45,422 205 -0.342
ŶLC – – 14.09×108 11872 -0.599

In tables 1 – 3, one can observe that the use of true probabilities (ŶDNTrue) leads to estimated targets
with larger variability than that of the estimated targets obtained using ML-estimated probabilities
(ŶDN_ML). Observe that the standard error when using true probabilities is 872, which is four times
more than the standard error when using estimated probabilities. Note that the results for these two
estimators are the same over all three tables, because they are not defined by the benchmark variables
used.

As predicted by the results in Section 3, the variance for the calibration estimator of the model
coefficients is smaller when sample level information is used rather than population level information.
This is observed in all three tables. Also, as expected, the ML estimator is associated with the
smallest variance estimates, except the two-step estimators. The results also indicate that the variance
decreases with increased correlation between the model and auxiliary variables; the variance estimates
are the highest in Table 2. However, the comparison of tables 1 and 3 indicates that the correlation
is not the only determinant of variance.



www.manaraa.com

78
Comparisons of some weighting methods for nonresponse adjustment

Table 3: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,vakγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.392,-0.179) (2.206,0.063) 78,540 277 0.231
ŶPS_samp (1.318,-0.167) (1.078,0.031) 69,218 262 0.125
Ŷ2stepML – – 30,087 173 - 0.083
Ŷ2stepA – – 30,139 173 -0.065
Ŷ2stepB – – 43,848 209 -0.029
ŶLC – – 2.4×107 4870 -1.343

A comparison between population and sample based propensity calibrations for population totals,
that is, ŶPS_pop and ŶPS_samp, indicates that under the definition of benchmark and model auxiliary
information given in Table 1, these estimators perform rather similarly. The SE and RB are 226 and
-0.042%, respectively, for the population-based calibration and 225 and -0.053%, respectively, for the
sample-based calibration. In Table 2, however, the population-calibrated estimator displays larger
variability. The SE and RB are 429 and 0.09%, respectively, for the population-calibrated estimator
and 334 and -0.16%, respectively, for the sample-calibrated estimator. The same observation is made
in Table 3, although the difference is smaller, i.e., 277 and 0.231% versus 262 and 0.125%.

The direct estimator based on model coefficients estimated by ML (ŶDN_ML) provides better results
than do the single-step calibration estimators based on sample or population auxiliary information.
In tables 1 – 3, the ML based estimator exhibits an SE of 214 and an RB of -0.014%.

The proposed two-step estimators provide much smaller SE and MSE estimates than do the single-
step estimators. In some cases, the RB estimates are slightly larger. Estimators Ŷ2stepML (two-step
with ML-estimated coefficients) and Ŷ2stepA (two-step with sample calibration-estimated coefficients),
produce very similar results, with slightly smaller MSE and SE estimates for the estimator using
ML-estimated model coefficients.

Finally, it is interesting to compare the effects of using different benchmark variables on the proper-
ties of the calibration-based estimators. Overall, the smallest MSE and SE estimates of the population
total estimators are observed in Table 1, where the benchmark variable correlates moderately with
both the study and the model variable. Table 2 contains the largest MSE and SE estimates observed
among the three tables. The difference in the results of the Ŷ2stepML estimator between tables 2 and
3 is interesting. The estimator uses the same coefficient estimates but different benchmark variables,
resulting in smaller MSE in Table 3.

Results are also provided for the linear calibration estimator. In all three tables, this estimator
is the most penalized under the presented choices of auxiliary information. The auxiliary variables
definition in Table 1 provides better results than do the definitions in Tables 2 and 3, the definition
in Table 2 proving to be the worst of the three.

The results presented in tables 4 – 6 concern simulations based on the same setup as presented in
Table 1, i.e., zk = (1,v1k)

t and xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t , except that the sample sizes differ. In

Table 4, the ordinary sample size of 300 was reduced by approximately 40%, while in tables 5 and 6
the sample was increased by approximately 100% and 400% respectively.

The results presented in the tables 4 – 6 indicate an increase and a decrease in the standard
errors of the estimated targets in line with a decrease and an increase in the sample size. The
standard picture in Table 1 prevails under all three sample sizes, i.e. sample calibration leads to
smaller variance in model coefficient estimates than does the population calibration, while ML yields
the overall smallest variance estimates. The sample-calibrated estimator, ŶPS_samp, yields smaller SE
and MSE estimates than does the population-calibrated estimator, ŶPS_pop. In turn, ŶDN_ML yields the
smallest SE and MSE estimates of these three estimators. In addition, the two-step estimators Ŷ2stepML

and Ŷ2stepA produce smaller SE and MSE estimates than do the other estimators. Interestingly, the
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Table 4: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=185

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.271,-0.160) (0.855,0.024) 75,694 275 -0.110
ŶPS_pop (1.142,-0.132) (4.914,0.143) 105,707 325 -0.059
ŶPS_samp (1.157,-0.138) (2.302,0.067) 91,838 303 -0.110
Ŷ2stepML – – 45,545 207 -0.309
Ŷ2stepA – – 46,257 207 -0.344
ŶLC – – 760,742 865 -0.635

Table 5: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=600

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.268,-0.161) (0.240,0.007) 22,552 150 -0.060
ŶPS_pop (1.214,-0.150) (1.188,0.034) 28,028 167 -0.060
ŶPS_samp (1.206,-0.150) (0.581,0.017) 23,659 153 -0.099
Ŷ2stepML – – 10,889 102 -0.136
Ŷ2stepA – – 11,043 102 -0.157
ŶLC – – 21,480 146 -0.065

Table 6: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=1200

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.229,-0.154) (0.125,0.004) 8246 91 -0.016
ŶPS_pop (1.197,-0.148) (0.417,0.012) 8939 94 -0.033
ŶPS_samp (1.212,-0.151) (0.273,0.008) 8638 93 -0.022
Ŷ2stepML – – 4288 65 -0.042
Ŷ2stepA – – 4270 65 -0.035
ŶLC – – 6750 82 -0.010

linear calibration estimator displays improved properties with an increased sample size. This indicates
that the estimator is competitive with the direct ML or calibration weighting.

4.1.2 Misspecified response probability model

The results in tables 7 and 8 are based on simulations with the erroneous model vector, zk = (1,v3k)
t ,

and the auxiliary vectors, xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t and xk = (γ1k, ...,γ6k,γ1kvbk, ...,γ6kvbk)

t , re-
spectively. The true model variable, v1, and the specified model variable, v3, have a correlation of
approximately 0.16. Table 7 shows the results when the model variable is misspecified while the aux-
iliary variable is moderately correlated with the study variable and weakly correlated with the model
variable. Table 8 presents the results when the auxiliary variable does not correlate well with either
the study or the model variables (see 4).

The results presented in tables 7 and 8 indicate an increase in bias, compared with results in
Table 1. In terms of SE, the levels are roughly the same in tables 7 and 8 as in Table 1, with the
exceptions of the two-step estimators in Table 8. The MSEs for these estimators are larger in tables
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Table 3: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,vakγk)
t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.258,-0.158) (0.462,0.013) 45,771 214 -0.014
ŶPS_pop (1.392,-0.179) (2.206,0.063) 78,540 277 0.231
ŶPS_samp (1.318,-0.167) (1.078,0.031) 69,218 262 0.125
Ŷ2stepML – – 30,087 173 - 0.083
Ŷ2stepA – – 30,139 173 -0.065
Ŷ2stepB – – 43,848 209 -0.029
ŶLC – – 2.4×107 4870 -1.343

A comparison between population and sample based propensity calibrations for population totals,
that is, ŶPS_pop and ŶPS_samp, indicates that under the definition of benchmark and model auxiliary
information given in Table 1, these estimators perform rather similarly. The SE and RB are 226 and
-0.042%, respectively, for the population-based calibration and 225 and -0.053%, respectively, for the
sample-based calibration. In Table 2, however, the population-calibrated estimator displays larger
variability. The SE and RB are 429 and 0.09%, respectively, for the population-calibrated estimator
and 334 and -0.16%, respectively, for the sample-calibrated estimator. The same observation is made
in Table 3, although the difference is smaller, i.e., 277 and 0.231% versus 262 and 0.125%.

The direct estimator based on model coefficients estimated by ML (ŶDN_ML) provides better results
than do the single-step calibration estimators based on sample or population auxiliary information.
In tables 1 – 3, the ML based estimator exhibits an SE of 214 and an RB of -0.014%.

The proposed two-step estimators provide much smaller SE and MSE estimates than do the single-
step estimators. In some cases, the RB estimates are slightly larger. Estimators Ŷ2stepML (two-step
with ML-estimated coefficients) and Ŷ2stepA (two-step with sample calibration-estimated coefficients),
produce very similar results, with slightly smaller MSE and SE estimates for the estimator using
ML-estimated model coefficients.

Finally, it is interesting to compare the effects of using different benchmark variables on the proper-
ties of the calibration-based estimators. Overall, the smallest MSE and SE estimates of the population
total estimators are observed in Table 1, where the benchmark variable correlates moderately with
both the study and the model variable. Table 2 contains the largest MSE and SE estimates observed
among the three tables. The difference in the results of the Ŷ2stepML estimator between tables 2 and
3 is interesting. The estimator uses the same coefficient estimates but different benchmark variables,
resulting in smaller MSE in Table 3.

Results are also provided for the linear calibration estimator. In all three tables, this estimator
is the most penalized under the presented choices of auxiliary information. The auxiliary variables
definition in Table 1 provides better results than do the definitions in Tables 2 and 3, the definition
in Table 2 proving to be the worst of the three.

The results presented in tables 4 – 6 concern simulations based on the same setup as presented in
Table 1, i.e., zk = (1,v1k)

t and xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t , except that the sample sizes differ. In

Table 4, the ordinary sample size of 300 was reduced by approximately 40%, while in tables 5 and 6
the sample was increased by approximately 100% and 400% respectively.

The results presented in the tables 4 – 6 indicate an increase and a decrease in the standard
errors of the estimated targets in line with a decrease and an increase in the sample size. The
standard picture in Table 1 prevails under all three sample sizes, i.e. sample calibration leads to
smaller variance in model coefficient estimates than does the population calibration, while ML yields
the overall smallest variance estimates. The sample-calibrated estimator, ŶPS_samp, yields smaller SE
and MSE estimates than does the population-calibrated estimator, ŶPS_pop. In turn, ŶDN_ML yields the
smallest SE and MSE estimates of these three estimators. In addition, the two-step estimators Ŷ2stepML

and Ŷ2stepA produce smaller SE and MSE estimates than do the other estimators. Interestingly, the
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Table 4: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=185

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.271,-0.160) (0.855,0.024) 75,694 275 -0.110
ŶPS_pop (1.142,-0.132) (4.914,0.143) 105,707 325 -0.059
ŶPS_samp (1.157,-0.138) (2.302,0.067) 91,838 303 -0.110
Ŷ2stepML – – 45,545 207 -0.309
Ŷ2stepA – – 46,257 207 -0.344
ŶLC – – 760,742 865 -0.635

Table 5: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=600

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.268,-0.161) (0.240,0.007) 22,552 150 -0.060
ŶPS_pop (1.214,-0.150) (1.188,0.034) 28,028 167 -0.060
ŶPS_samp (1.206,-0.150) (0.581,0.017) 23,659 153 -0.099
Ŷ2stepML – – 10,889 102 -0.136
Ŷ2stepA – – 11,043 102 -0.157
ŶLC – – 21,480 146 -0.065

Table 6: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a true response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=1200

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (1.229,-0.154) (0.125,0.004) 8246 91 -0.016
ŶPS_pop (1.197,-0.148) (0.417,0.012) 8939 94 -0.033
ŶPS_samp (1.212,-0.151) (0.273,0.008) 8638 93 -0.022
Ŷ2stepML – – 4288 65 -0.042
Ŷ2stepA – – 4270 65 -0.035
ŶLC – – 6750 82 -0.010

linear calibration estimator displays improved properties with an increased sample size. This indicates
that the estimator is competitive with the direct ML or calibration weighting.

4.1.2 Misspecified response probability model

The results in tables 7 and 8 are based on simulations with the erroneous model vector, zk = (1,v3k)
t ,

and the auxiliary vectors, xk = (γ1k, ...,γ6k,γ1kv2k, ...,γ6kv2k)
t and xk = (γ1k, ...,γ6k,γ1kvbk, ...,γ6kvbk)

t , re-
spectively. The true model variable, v1, and the specified model variable, v3, have a correlation of
approximately 0.16. Table 7 shows the results when the model variable is misspecified while the aux-
iliary variable is moderately correlated with the study variable and weakly correlated with the model
variable. Table 8 presents the results when the auxiliary variable does not correlate well with either
the study or the model variables (see 4).

The results presented in tables 7 and 8 indicate an increase in bias, compared with results in
Table 1. In terms of SE, the levels are roughly the same in tables 7 and 8 as in Table 1, with the
exceptions of the two-step estimators in Table 8. The MSEs for these estimators are larger in tables
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Table 7: Simulated estimates of RB, SE and MSE for the total of the survey variable
in case of a true response function and erroneous model variable, that is zk = (1,v3k)

t ,
xk = (γk,v2kγk)

t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (0.521,-0.085) (0.692,0.141) 57,791 211 -0.678
ŶPS_pop (0.437,-0.043) (2.359,0.496) 55,056 204 -0.680
ŶPS_samp (0.469,-0.060) (0.958,0.196) 61,322 218 -0.692
Ŷ2stepML – – 28,133 156 -0.367
Ŷ2stepA – – 28,255 155 -0.376
ŶLC – – 66×108 81,350 -3.222

Table 8: Simulated estimates of RB, SE and MSE for the total of the survey variable
in case of an erroneous model and weak auxiliary variables, i.e., zk = (1,v3k)

t , xk =
(γk,vbkγk)

t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (0.521,-0.085) (0.692,0.141) 57,791 211 -0.678
ŶPS_pop (0.599,-0.115) (1.914,0.397) 57,791 206 -0.648
ŶPS_samp (0.609,-0.124) (0.934,0.190) 57,223 216 -0,602
Ŷ2stepML – – 47,261 197 -0.537
Ŷ2stepA – – 47,041 197 -0.528
ŶLC – – 3.01×108 17,348 -1.169

7 and 8 than in Table 1. For the direct calibration estimators, the relationship between sample and
population level information is reversed, compared with that presented in Table 1. The population
level calibrated estimator yields smaller SE and MSE estimates in tables 7 and 8. Still, the two-step
calibration estimators provide the smallest SE and MSE estimates. These are also associated with the
smallest bias estimates.

In Table 9, estimation is carried out as in Table 1, but the true response probability model is
the exponential model p(Rk = 1|k ∈ s) =

[
1− exp(−zt

kg)
]
. The coefficient vector was defined to be

gt = (0.185, 0.08). The coefficients were chosen so that the response probabilities are within the same
range as in Table 1.

Table 9: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a misspecified response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=300.

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDN_ML (-1.061,0.166) (0.472,0.014) 52,640 229 -0.014
ŶPS_pop (-1.125,0.180) (2.374,0.072) 56,865 238 0.059
ŶPS_samp (-1.105,0.175) (1.278,0.039) 58,189 241 0.027
Ŷ2stepML – – 29,164 170 -0.116
Ŷ2stepA – – 29,343 170 -0.131

As a result of this setup, model coefficient estimators are inconsistent, as illustrated by the results
in Table 9. For the estimators of the population total, the results in Table 9 are not very different
from the ones presented in Table 1. The SE and MSE estimates for the ML-based direct weighting
estimator are larger, but still the smallest estimated SE and MSE for the direct weighting estimators.
In addition, as observed in tables 7 and 8, calibration using population level information yields smaller
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SE and MSE estimates than does calibration using sample level information. As previously observed
in all tables, the two-step calibration estimators have the smallest SE and MSE estimates.

5. Discussion

Simulation results are consistent with the principle that estimated probabilities outperform true prob-
abilities in weighting for nonresponse, as was earlier known for ML-estimated probabilities (see [13]).
The results presented here suggest that the gain in using estimated probabilities also holds for alterna-
tive model parameter estimators. This somewhat surprising principle is here interpreted as due to the
random response set size whereby the HT estimator is not location invariant. The results presented
also suggest that the gain in using estimated probabilities holds for alternative model parameters. In
fact, even under the considered misspecifications of the response probability model, the results indicate
the improved performance of the weighting estimators using estimated response probabilities.

The major concern in the paper is the use of sample or population level auxiliary information in
the calibration of the response probability function. The simulation results obtained are consistent
with the formal asymptotic argument presented, suggesting the use of sample auxiliary information for
estimating the response probability function. Results indicate that the response function parameters
are estimated with lower variance when using sample auxiliary information instead of population
level information. The importance of having auxiliary information highly correlated with the model
variables is observed for both levels of auxiliary information.

Using sample or population level information in the calibration estimators of population totals
produces similar relative biases and standard errors. However, the sample-based calibration estimator
has a smaller MSE than does the population counterpart; this is observed in all cases when the model
is correctly specified. However, ML-estimated probabilities yield an estimator with the smallest SE
and MSE estimates.

The auxiliary vector used in Table 2 is moderately correlated with the study variable while having
virtually no relationship with the model variable; the standard errors for the single step calibration
estimators are greater than when the auxiliary variable is correlated with both the study and model
variables (Table 1). A much smaller difference is observed when auxiliary variables are correlated with
the model variable while having virtually no correlation with the study variable (Table 3). This sug-
gests a preference for auxiliary variables related to response propensity model variables over auxiliary
variables related to the study variable.

Response probability function modelling is susceptible to misspecification. Under the erroneous
choice of model variables, the major effects observed here are on the bias of the propensity based-
estimators. The estimators (i.e., ŶDN_ML,ŶPS_pop and ŶPS_samp) are associated with larger biases, al-
though still at a low relative level (tables 7 and 8). The major observation is that the population-based
calibrated estimator is more effective in error protection than is either the sample-calibrated or ML-
based estimator. Still, good auxiliary information is important for the model variables. Although the
evidence presented suggests that using sample auxiliary information is superior to using population
auxiliary information in propensity calibration estimators, the population level propensity calibration
is suggested to be the best alternative for reducing the MSE of the target estimates when the model
is misspecified.

An erroneous functional form of the response probability model does not have a great impact on
the estimator performance, according to the results in Table 9. One likely reason for this is that
the two models are similar. However, the results suggest that the choice of the functional form is
less important than is having the right model variables. This is partly supported by the competitive
performance of the linear calibration estimator at larger sample sizes.

We suggest that estimation be performed in two steps; in the first step, the sample auxiliary data
are used in the propensity calibration for estimating the response probabilities; in the second step,
the products of the design weights and the reciprocals of response probabilities replace the design
weights in the linear calibration estimator. The two-step estimation is to be performed using sample
auxiliary information for estimating the response model through calibration, followed by the use of
population auxiliary information for estimating target entities. This will generally produce more
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Table 7: Simulated estimates of RB, SE and MSE for the total of the survey variable
in case of a true response function and erroneous model variable, that is zk = (1,v3k)

t ,
xk = (γk,v2kγk)

t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (0.521,-0.085) (0.692,0.141) 57,791 211 -0.678
ŶPS_pop (0.437,-0.043) (2.359,0.496) 55,056 204 -0.680
ŶPS_samp (0.469,-0.060) (0.958,0.196) 61,322 218 -0.692
Ŷ2stepML – – 28,133 156 -0.367
Ŷ2stepA – – 28,255 155 -0.376
ŶLC – – 66×108 81,350 -3.222

Table 8: Simulated estimates of RB, SE and MSE for the total of the survey variable
in case of an erroneous model and weak auxiliary variables, i.e., zk = (1,v3k)

t , xk =
(γk,vbkγk)

t and n=300

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDNTrue (1.246,-0.157) – 760,293 872 -0.006
ŶDN_ML (0.521,-0.085) (0.692,0.141) 57,791 211 -0.678
ŶPS_pop (0.599,-0.115) (1.914,0.397) 57,791 206 -0.648
ŶPS_samp (0.609,-0.124) (0.934,0.190) 57,223 216 -0,602
Ŷ2stepML – – 47,261 197 -0.537
Ŷ2stepA – – 47,041 197 -0.528
ŶLC – – 3.01×108 17,348 -1.169

7 and 8 than in Table 1. For the direct calibration estimators, the relationship between sample and
population level information is reversed, compared with that presented in Table 1. The population
level calibrated estimator yields smaller SE and MSE estimates in tables 7 and 8. Still, the two-step
calibration estimators provide the smallest SE and MSE estimates. These are also associated with the
smallest bias estimates.

In Table 9, estimation is carried out as in Table 1, but the true response probability model is
the exponential model p(Rk = 1|k ∈ s) =

[
1− exp(−zt

kg)
]
. The coefficient vector was defined to be

gt = (0.185, 0.08). The coefficients were chosen so that the response probabilities are within the same
range as in Table 1.

Table 9: Simulated estimates of RB, SE and MSE for the total of the survey variable in
case of a misspecified response model with zk = (1,v1k)

t , xk = (γk,v2kγk)
t and n=300.

Estimator
Coefficients Coefficients variance MSE S.error Rel.bias
(ĝ0, ĝ1) var (ĝ0, ĝ1) (Ŷ ) (Ŷ ) (Ŷ )

ŶDN_ML (-1.061,0.166) (0.472,0.014) 52,640 229 -0.014
ŶPS_pop (-1.125,0.180) (2.374,0.072) 56,865 238 0.059
ŶPS_samp (-1.105,0.175) (1.278,0.039) 58,189 241 0.027
Ŷ2stepML – – 29,164 170 -0.116
Ŷ2stepA – – 29,343 170 -0.131

As a result of this setup, model coefficient estimators are inconsistent, as illustrated by the results
in Table 9. For the estimators of the population total, the results in Table 9 are not very different
from the ones presented in Table 1. The SE and MSE estimates for the ML-based direct weighting
estimator are larger, but still the smallest estimated SE and MSE for the direct weighting estimators.
In addition, as observed in tables 7 and 8, calibration using population level information yields smaller
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SE and MSE estimates than does calibration using sample level information. As previously observed
in all tables, the two-step calibration estimators have the smallest SE and MSE estimates.

5. Discussion

Simulation results are consistent with the principle that estimated probabilities outperform true prob-
abilities in weighting for nonresponse, as was earlier known for ML-estimated probabilities (see [13]).
The results presented here suggest that the gain in using estimated probabilities also holds for alterna-
tive model parameter estimators. This somewhat surprising principle is here interpreted as due to the
random response set size whereby the HT estimator is not location invariant. The results presented
also suggest that the gain in using estimated probabilities holds for alternative model parameters. In
fact, even under the considered misspecifications of the response probability model, the results indicate
the improved performance of the weighting estimators using estimated response probabilities.

The major concern in the paper is the use of sample or population level auxiliary information in
the calibration of the response probability function. The simulation results obtained are consistent
with the formal asymptotic argument presented, suggesting the use of sample auxiliary information for
estimating the response probability function. Results indicate that the response function parameters
are estimated with lower variance when using sample auxiliary information instead of population
level information. The importance of having auxiliary information highly correlated with the model
variables is observed for both levels of auxiliary information.

Using sample or population level information in the calibration estimators of population totals
produces similar relative biases and standard errors. However, the sample-based calibration estimator
has a smaller MSE than does the population counterpart; this is observed in all cases when the model
is correctly specified. However, ML-estimated probabilities yield an estimator with the smallest SE
and MSE estimates.

The auxiliary vector used in Table 2 is moderately correlated with the study variable while having
virtually no relationship with the model variable; the standard errors for the single step calibration
estimators are greater than when the auxiliary variable is correlated with both the study and model
variables (Table 1). A much smaller difference is observed when auxiliary variables are correlated with
the model variable while having virtually no correlation with the study variable (Table 3). This sug-
gests a preference for auxiliary variables related to response propensity model variables over auxiliary
variables related to the study variable.

Response probability function modelling is susceptible to misspecification. Under the erroneous
choice of model variables, the major effects observed here are on the bias of the propensity based-
estimators. The estimators (i.e., ŶDN_ML,ŶPS_pop and ŶPS_samp) are associated with larger biases, al-
though still at a low relative level (tables 7 and 8). The major observation is that the population-based
calibrated estimator is more effective in error protection than is either the sample-calibrated or ML-
based estimator. Still, good auxiliary information is important for the model variables. Although the
evidence presented suggests that using sample auxiliary information is superior to using population
auxiliary information in propensity calibration estimators, the population level propensity calibration
is suggested to be the best alternative for reducing the MSE of the target estimates when the model
is misspecified.

An erroneous functional form of the response probability model does not have a great impact on
the estimator performance, according to the results in Table 9. One likely reason for this is that
the two models are similar. However, the results suggest that the choice of the functional form is
less important than is having the right model variables. This is partly supported by the competitive
performance of the linear calibration estimator at larger sample sizes.

We suggest that estimation be performed in two steps; in the first step, the sample auxiliary data
are used in the propensity calibration for estimating the response probabilities; in the second step,
the products of the design weights and the reciprocals of response probabilities replace the design
weights in the linear calibration estimator. The two-step estimation is to be performed using sample
auxiliary information for estimating the response model through calibration, followed by the use of
population auxiliary information for estimating target entities. This will generally produce more
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efficient estimates.
The results presented all favor the suggested two-step calibration estimators. In some cases, these

estimators are associated with larger bias, thought their relative sizes are small. In terms of MSE, the
two-step estimators outperform other estimators. This is also observed when the response probability
model is misspecified. A general suggestion would be to use ML to estimate model parameters in the
first step, if model variables are available at the sample level. If the model variables are available only
at the response set level, the [5] calibration estimator for model parameters is almost equally good.
The results of the two-step estimators are of particular interest since response probability functions
used in practice are models susceptible to misspecification. The effects of misspecification are usually
unknown and can yield an adjusted estimator with a larger bias than the unadjusted one, depending on
correlation structures among the study variable, response probability and auxiliary variables ([17]).
Although small, a second calibration step reduces bias estimates in cases with a wrong auxiliary
variable in the response probability model (tables 7 and 8).A question for further studies is whether
a second step calibration can protect against the misspecification of the response probability function
and/or if indicators of misspecification can be developed.

With large sample sizes and carefully chosen auxiliary information, the linear calibration estimator
is fairly competitive with the propensity-based estimators. The linear calibration estimator is known
to have good properties when good auxiliary information is available. On the other hand, poorly
defined auxiliary variables may lead to negative and/or very large weights in the linear calibration
([21], remark 6.1). These problems may result in very inefficient estimates.A conclusion based on the
results presented in Table 1 is that the properties of the linear calibration estimator can be improved by
using efficient initial weights. These weights can be derived from a sample-based propensity calibration
estimator. The combined approaches produce more efficient estimates.

Tables 1 – 3 provide results for, Ŷ2stepB, an estimator not discussed here. It is a version of Ŷ2stepA

in which auxiliary information exists only at the sample level, i.e. sample level information is used in
both steps. This will generally provide slightly better RB, but the SE and MSE are higher than those
provided by Ŷ2stepA.

5.1. Limitations

In this article, we use an estimation setting in which only positive correlations among the variables in
the study are considered. [17] have noted that the direction of the correlation between the variables
involved in the study has an influence on the properties of the estimated entities. This suggests a
further investigation whether the results here are the same when the variables are negatively correlated.
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Variance Estimation in Two-Step Calibration

for Nonresponse Adjustment

Bernardo João Rota

Abstract

Rota and Laitila (2015) suggest an alternative two-step calibra-
tion estimation resulting from combining two calibration estimation
approaches, i.e., linear calibration (Särndal and Lundström 2005) and
propensity score calibration (Chang and Kott 2008), when the func-
tional form of the response probability is assumed to be known. The
first step focuses on estimating this function and the second step on esti-
mating the total of a survey variable. This paper extends these previous
findings by deriving an approximate variance expression and suggesting
a variance estimator for the two-step estimator. The paper also justifies
the use of sample-level auxiliary information in the first step of estima-
tion, deferring the use of population-level auxiliary information to the
second step of estimation.

Keywords: Two-step, Variance estimator, Calibration, Nonresponse,
Auxiliary information, Response probability.

1 Introduction

Efficient estimation in surveys affected by nonresponse requires the appropri-
ate use of auxiliary information. This theme is emphasized by, for example,
Rizzo et al. (1996), Särndal and Lundström (2007), and Brick (2013). Various
approaches to accounting for the negative effects of nonresponse are proposed
in the literature, with weighting the units in the response being one alterna-
tive. Auxiliary information can be available at different levels, such as the
sample-level, population-level, or both. When both these levels of auxiliary
information are available, they offer alternative ways of constructing the aux-
iliary vectors (see Estevão and Särndal 2002). Moreover, the combined use

Bernardo João Rota | 1



www.manaraa.com

PAPER II

Variance Estimation in Two-Step Calibration

for Nonresponse Adjustment

Bernardo João Rota

Abstract

Rota and Laitila (2015) suggest an alternative two-step calibra-
tion estimation resulting from combining two calibration estimation
approaches, i.e., linear calibration (Särndal and Lundström 2005) and
propensity score calibration (Chang and Kott 2008), when the func-
tional form of the response probability is assumed to be known. The
first step focuses on estimating this function and the second step on esti-
mating the total of a survey variable. This paper extends these previous
findings by deriving an approximate variance expression and suggesting
a variance estimator for the two-step estimator. The paper also justifies
the use of sample-level auxiliary information in the first step of estima-
tion, deferring the use of population-level auxiliary information to the
second step of estimation.

Keywords: Two-step, Variance estimator, Calibration, Nonresponse,
Auxiliary information, Response probability.

1 Introduction

Efficient estimation in surveys affected by nonresponse requires the appropri-
ate use of auxiliary information. This theme is emphasized by, for example,
Rizzo et al. (1996), Särndal and Lundström (2007), and Brick (2013). Various
approaches to accounting for the negative effects of nonresponse are proposed
in the literature, with weighting the units in the response being one alterna-
tive. Auxiliary information can be available at different levels, such as the
sample-level, population-level, or both. When both these levels of auxiliary
information are available, they offer alternative ways of constructing the aux-
iliary vectors (see Estevão and Särndal 2002). Moreover, the combined use

Bernardo João Rota | 1



www.manaraa.com

of population and sample level auxiliary information gives further alterna-
tives when estimating population characteristics. One such alternative is the
estimation in two steps.

A two-step estimation by calibration approach is suggested by, for example,
Särndal and Lundström (2005), with linear calibration acting in both steps.
Kott and Liao (2015) also suggest a two-step calibration estimation approach
assuming a known functional form of the response mechanism.

In two-step estimation, sample-level auxiliary information can be used in
the initial adjustment to correct for nonresponse bias and population-level
auxiliary information in the final adjustment intended to reduce the sampling
variance. One reason for employing sample auxiliary data for preliminary
adjustment is that these data may well capture important respondent charac-
teristics. For example, if the sample auxiliary data are process data, they will
generally embody information about the nonresponse pattern, which may be
important in correcting for nonresponse bias (e.g., Brick 2013).

Calibration adjustment, initially conceived for correcting sampling errors
(Deville and Särndal 1992; Deville et al. 1993), is currently one of the most
appealing techniques for nonresponse adjustment. The rationale of calibration
is to construct adjustment weights that replicate known quantities. Several
calibration schemes have been proposed in the literature, including:

1. Linear calibration (LC) (e.g., Lundström and Särndal 1999) is derived
from a Chi-square type function that minimizes the distance between the
sampling weights and the calibrated weights. In the absence of nonresponse,
this calibration estimator takes the form of a generalized regression (GREG)
estimator (Särndal et al. 1992). An important feature of this version of
calibration is that it simply relies on the strength of the auxiliary variables in
explaining either variables of interest, the response pattern, or both, without
an explicit need for modeling.

2. Propensity calibration (PC) (e.g., Chang and Kott 2008; Kim and Park
2010; Kott and Day 2014; Kott and Liao 2015) relies on explicit modeling
of the response pattern, that is, the functional form of the response model
is assumed to be known and its parameters are estimated by means of the
calibration principle.

3. Model calibration (MC) (e.g. Wu and Sitter, 2001; Särndal, 2007;
Lehtonen et al., 2008; Rueda et al., 2010). Here, the data is assumed to
be generated by an underlying process described by specific model that links
the survey variable of interest to some covariates, and calibration is used
in construction of weights that are consistent with population totals of the
predicted targets obtained using that model.

2 | Bernardo João Rota

4. Hybrid calibration (HC) (Lehtonen and Veijanen, 2015). This calibra-
tion scheme combines MC and model-free calibration estimator, attempting
thus to exploit their favourable properties. The auxiliary vector encompasses
both the auxiliary data and predictions of the study variable values.

The last two calibration schemes illustrate the recent advances in the cali-
bration approach. They have been used for domain or small area estimation,
e.g., (Lehtonen and Veijanen, 2012, 2015).

Rota and Laitila (2015) combine LC and PC schemes and construct an
alternative estimator of the total Y of a survey variable y by means of two-
step estimation in the presence of sample- and population-level auxiliary in-
formation under the assumption of a known functional form of the response
mechanism. In line with this setup, this paper contributes by deriving an
approximate variance expression and suggesting a variance estimator for this
alternative two-step estimator. Moreover, we demonstrate that the use of
sample-level auxiliary information generally yields more efficient two-step esti-
mator than does the use of population-level auxiliary information. Simulation
studies are carried out to illustrate the properties of the two-step estimator
and its variance.

The rest of the paper is organized as follows: section 2 introduces calibra-
tion theory; the two-step estimator is presented in section 3 and the variance
and variance estimator in section 4; in section 5, we provide arguments jus-
tifying the use of sample auxiliary information in the first step of estimation;
the simulation study is presented in section 6 and the results are discussed in
the final section.

2 Introduction of calibration estimation

2.1 Notations

Sample s of n elements is drawn from population U = {1, 2, ..., k, ..., N} of size
N using a probability sampling design, p(s), that yields the first- and second-
order inclusion probabilities πk = Pr(k ∈ s) > 0 and πkl = Pr(k, l ∈ s) > 0,
respectively, and πkk = πk for all k, l ∈ U . Let r ⊂ s denote the response
set. Units in the sample respond independently of each other with probability
qk = Pr(k ∈ r |k ∈ s) > 0 . Assume y to be the survey variable of which we
are interested in estimating its total Y =

∑
k�U yk using auxiliary information

defined as:
(a) xk = (x1k, x2k, ..., xJk)

t
, a J-dimensional vector of known values for

all elements k in the response set r; for each j = 1, ..., J , Txj =
∑

k�U xjk is
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known. This implies that Tx = (Tx1, Tx2, ..., TxJ)
t
is also known.

(b) zk = (z1k, z2k, ..., zLk)
t
, an L-dimensional vector of known values for

all elements k in the sample set, s. For each l = 1, ..., L, we can estimate

t̂zl =
∑

k�s dkzlk and compose the vector t̂z =
(
t̂z1, t̂z2, ..., t̂zL

)t
.

Unless otherwise stated, the expected value EpEq(A), is written simply as
E(A).

2.2 Calibration estimators

Calibration estimators are a class of weighted estimators of the form Ŷcal =∑
k�r wkyk, with weights wk satisfying the calibration constraint

∑
k�r wkx̌k =

X̌, where x̌k stands for xk, zk, or x̌k = (xt
k, z

t
k)

t
and X̌ corresponds to their

respective totals, i.e., Tx, t̂z, or
(
T t
x, t̂

t
z

)t
. Papers by Deville and Särndal

(1992) and Deville et al. (1993), benchmarks in calibration estimation theory,
approach calibration in the context of full-sample responses and their main
purpose was the reduction of sampling errors. The approach was then ex-
tended to cases of samples with nonresponse in order to reduce nonresponse
bias (e.g., Singh et al. 1995; Niyonsenga 1997; Lundström and Särndal 1999;
Kreuter and Olson 2011).

The minimum-distance approach to deriving calibration weights aims to
determine calibrated weights as close as possible to the design weights by
means of a distance function, D(w, d). Deville and Särndal (1992) required
the distance D to be positive and a convex function of its arguments, with
D(0) = dD(0) = 1, where d stands for the first derivative. Minimizing D,
subject to the above calibration constraint and using a Lagrange function,
leads to calibrated weights of the form wk = dkF (·), where F−1(a) = dD(a)
and dk = 1/πk. When D is chosen to be

D(w, d) =
∑
k�r

[
d−2
k (wk − dk)

]2
/2, (1)

the calibrated weights are given by wk = dk + dkg
tx̌k, which are linear in

the coefficient vector gt =
(
X̌−∑

k�r dkx̌k

)t
(
∑

k�r dkx̌kx̌
t
k)

−1
. The resulting

estimator of Y , commonly termed a linear calibration estimator, is given by

ŶLC =
∑
k�r

dkyk + gt
∑
k�r

dkx̌kyk. (2)

Other distance functions will generally produce calibrated weights that are
nonlinear in their coefficients and deriving these weights may require some
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iterative procedures. Deville et al. (1993) provide a set of common distance
functions that can be used in generating calibrated weights.

A direct approach when adjusting for nonresponse is to assume that F (·)
is the nonresponse adjustment weight and to choose it suitably. The principle
is known as response propensity, in which F−1(·) is a probability function.
The calibration equation

∑
k�r dkF (·)x̌k = X̌ is employed in estimating the

function F (·). Chang and Kott (2008) use this principle in constructing the
estimator Ŷcal, with F (·) = F (ztkg), where zk with dimension less or equal to
that of xk, is known only for k�r. They also suggest an iterative algorithm
for estimating g.

3 Calibrating in two steps

Särndal and Lundström (2005) suggest a two-step calibration estimator, here
denoted by Ŷ2LC . The first- and second-step weights are constructed according
to the principle of combining population- and sample-level auxiliary informa-
tion. In the first step, sample-level information is used to construct interme-
diate weights, w1k, such that

∑
k�r w1kzk =

∑
k�s dkzk. In the second step,

weights w1k replace the design weights in the optimization problem that led to
calibration estimator (2), and the final weights, w2k, satisfy

∑
k�r w2kx̌k = X̌,

where x̌k = xk with X̌ = Tx or x̌k = (xt
k, z

t
k)

t
with X̌ =

(
T t
x, t̂

t
z

)t
.

The two-step estimator suggested by Rota and Laitila (2015) assumes that
the functional form of the response probability is known and is given by qk =
q(ztkg).

In the rest of the paper we use F̂k = F (ztkĝ), Fk = F (ztkg), and F ◦
k =

F (ztkg◦), where g is a generic parameter vector, g◦ is the true value of g, ĝ
is a consistent estimator of g◦, and Fk = 1/qk.

Rota and Laitila (2015) define intermediate weights as w1k = dkF̂k, after
calculating ĝ in the first step from the calibration equation

∑
k�r dkFkzk = t̂z.

The second-step weights, w2k, are derived from the problem min
{w2k}

∑
k�r

(w2k−w1k)
2

2w1k

subject to Tx =
∑

k�r w2kxk and given by w2k = w1kv2k with v2k = 1 + gt
2xk

and gt
2 = (Tx −∑

k�r w1kxk)
t
(
∑

k�r w1kxkx
t
k)

−1
, assuming that

∑
k�r w1kxkx

t
k

is invertible. Then, the two-step estimator for the total Y is given by Ŷ2step =∑
k�r w2kyk. This estimator can be equivalently written as:

Ŷ2step =
∑
k�r

dkF̂kyk +

(
Tx −

∑
k�r

dkF̂kxk

)t

B̂2Fr (3)
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z
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estimator Ŷcal, with F (·) = F (ztkg), where zk with dimension less or equal to
that of xk, is known only for k�r. They also suggest an iterative algorithm
for estimating g.

3 Calibrating in two steps

Särndal and Lundström (2005) suggest a two-step calibration estimator, here
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F (ztkg◦), where g is a generic parameter vector, g◦ is the true value of g, ĝ
is a consistent estimator of g◦, and Fk = 1/qk.
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where B̂2Fr =
(∑

k�r dkF̂kxkx
t
k

)−1 ∑
k�r dkF̂kxkyk.

4 The variance and variance estimator

The following assumptions are used in deriving the variance of the two-step
estimator:

(i) The sequence of populations and samples increases to infinity, as in
Isaki and Fuller (1982).

(ii) Function F (·g) is monotonic and continuous for all g in G, with finite
first derivatives.

(iii) vk = (xk, zk, yk) is nonrandom and �vk� < ∞.

(iv)
(
B̂2Fr −B2

)
, N−1 (Tx −∑

k�r dkF
◦
kxk), andN−1

(
t̂z −

∑
k�r dkF

◦
k zk

)

are all Op(n
− 1

2 ), where B2 = (
∑

k�U xkx
t
k)

−1 ∑
k�U xkyk is the population

analogous to B̂2Fr.
(v) N−1

∑
k�r dkxkF

◦
1k , N−1

∑
k�r dkF

◦
1kyk , and N−1

∑
k�r dkF

◦
kxk (xk)

t

are Op(1), where, F1 = dF/dg.

Given that ĝ is a solution to
∑

k�r dkFkzk = t̂z, we proceed as follows:∑
k�r dkF

◦
k zk−t̂z =

∑
k�r dkF̂kzk−t̂z+

∑
k�r dkzkF̃1k (ĝ − g◦) = Op

(
Nn− 1

2

)
.

This leads to equation (4) below:

(ĝ − g◦) = Γ−1N−1

(∑
k�r

dkF
◦
k zk − t̂z

)
+ op

(
n− 1

2

)
= Op

(
n− 1

2

)
(4)

where Γ is the probability limit of N−1
∑

k�r dkzkF̃1k, assumed invertible and

F̃1k = F1k (z
t
kg̃), with g̃ being a convex combination of ĝ and g◦.

A first-order Taylor approximation of Ŷ2step at g◦ gives:

Ŷ2step ≈
∑
k�r

dkF
◦
k yk +

(
Tx −

∑
k�r

dkF
◦
kxk

)t

B̂◦
2Fr

+
∑
k�r

dkF
◦
1k (ĝ − g◦)

(
yk − xt

kB̂
◦
2Fr

)
+ λt

◦
∑
k�r

dkxkF
◦
1k (ĝ − g◦)

(
yk − xt

kB̂
◦
2Fr

)

(5)

where λt
◦ = N−1 (Tx −∑

k�r dkF
◦
kxk)

t (
N−1

∑
k�r dkF

◦
kxkx

t
k

)−1
is Op(n

− 1
2 ).

6 | Bernardo João Rota

Now, as in Estevão and Särndal (2006), we can replace B̂◦
2Fr in (5) with(

B2 + B̂◦
2Fr −B2

)
and obtain:

Ŷ ◦
2step =

∑
k�r

dkF
◦
kEk + T t

xB2 +
∑
k�r

dkF
◦
1k (ĝ − g◦)Ek +R (6)

where R =
∑

k�r dkF
◦
1k (ĝ − g◦)λt

◦xkEk+[
(Tx −∑

k�r dkF
◦
kxk)

t −∑
k�r dkv

◦
kF

◦
1k (ĝ − g◦)xk

]t (
B̂◦

2Fr −B2

)
, v◦k =

1 + λt
◦xk, and Ek = yk − xt

kB2.

In (6),
∑

k�r dkF
◦
kEk and

∑
k�r dkF

◦
1k (ĝ − g◦)Ek are Op(Nn− 1

2 ), whereas
R is Op(Nn−1), thus, of lower order. This lower-order term is then dropped
to obtain the approximate expression for the two-step estimator of Y :

Ŷ •
2step =

∑
k�r

dkF
◦
kEk +

∑
k�r

dkF
◦
1k (ĝ − g◦)Ek + T t

xB2. (7)

If we replace (ĝ − g◦) in (7) with the corresponding expression in (4), we
get

Ŷ •
2step =

∑
k�r

dkF
◦
kEk+

∑
k�r

dkF
◦
1kΓ̃

−1

(∑
k�r

dkF
◦
k zk − t̂z

)
Ek+T t

xB2+op(Nn− 1
2 )

(8)
where Γ̃−1 = Γ−1N−1. Let

∑
k,l�A =

∑
k�A

∑
l�A and write (8) as:

Ŷ •
2step =

∑
k�s

RkdkF
◦
kEk +

∑
k,l�s

Rk(RlF
◦
l − 1)Akl + T t

xB2 (9)

where Akl = dkdlz
t
l

(
F◦

1kΓ̃
−1

)t

Ek, and Rk = 1 if k is a respondent; Rk = 0,

otherwise.
The variance of (3) is approximated by the variance of (9) given by:

V ar
(
Ŷ •
2step

)
= V ar(T̂ ◦

a ) + V ar(T̂ ◦
b ) + 2Cov

(
T̂ ◦
b , T̂

◦
a

)
. (10)

where T̂ ◦
a =

∑
k�s RkdkF

◦
kEk and T̂ ◦

b =
∑

k,l�s Rk(RlF
◦
l − 1)Akl.

The variances on the r.h.s. of (10) are obtained using result 9.3.1 in Särndal
et al. (1992, p. 348) and given by:
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V ar(T̂ ◦
a ) =

∑
k �=l�U (πkldkdl − 1)EkEl +

∑
k�U (dkF

◦
k − 1)E2

k,

V ar(T̂ ◦
b ) =

∑
k �=l �=i�U

πkli(F
◦
l −1)

F◦
kF◦

i
AklAil+

∑
k �=l�U

πkl−πkπl

F◦
kF◦

l
(F ◦

l − 1)(F ◦
k −

1)AkkAll+
∑

k �=l�U
πkl(F

◦
l −1)

F◦
k

A2
kl+

∑
k �=l�U

πkl

F◦
kF◦

l
(1− F ◦

k )(1− F ◦
l )AklAlk+

∑
k �=l�U

2πkl

F◦
kF◦

l
(1− F ◦

l )
2AklAll+

∑
k�U

πk(F
◦
k−πk)(F

◦
k−1)2

(F◦
k )2 A2

kk,

and
Cov

(
T̂ ◦
a , T̂

◦
b

)
=

∑
k �=l�U

dlπkl

F◦
k

((F ◦
l − 1)Akl + (F ◦

k − 1)Akk)El+
∑

k�U (F
◦
k −

1)AkkEk−
∑

k,l�U
πk(F

◦
k−1)

F◦
k

AkkEl.

Some details of the derivation of these formulae are given in Appendix.
The corresponding variance estimator is given by:

V̂ ar
(
Ŷ •
2step

)
= V̂ ar(T̂a) + V̂ ar(T̂b) + 2Ĉov

(
T̂b, T̂a

)
(11)

where, V̂ ar(T̂a) =
∑

k �=l�r(dkdl − dkl)ěkěl +
∑

k�r dkF̂k(dkF̂k − 1)e2k,

V̂ ar(T̂b) =
∑

k �=l �=i�r F̂l(F̂l − 1)ÂklÂil +
∑

k �=l�r(1 − dklπkπl)(F̂k − 1)(F̂l −
1)ÂkkÂll∑

k �=l�r F̂l(F̂l−1)Â2
kl+

∑
k �=l�r(1−F̂k)(1−F̂l)ÂklÂlk +

∑
k �=l�r 2(1−F̂l)

2ÂklÂll

+
∑

k�r
(F̂k−1)2(F̂k−πk)

F̂k
Â2

kk,

and
Ĉov

(
T̂b, T̂a

)
=

∑
k �=l�r dl

(
(F̂l − 1)Âkl + (F̂k − 1)Âkk

)
ěl+

∑
k�r dk(F̂k−1)Âkkěk

−∑
k,l�r dl(F̂k − 1)Âkkěl,

with

T̂a =
∑

k�s RkdkF̂kek, T̂b =
∑

k,l�s Rk(RlF̂l−1)Âkl, Âkl = dkdlz
t
l

(
F̂1k

ˆ̃Γ−1
)t

ek,

ˆ̃Γ =
∑

k�r dkzkF̂1k, dkl = 1/πkl, ěk = F̂kek, and ek = yk − xt
kB̂2Fr.

Note: As the third-order inclusion probability in variance estimator (11)
vanishes, the triple sum involved is easily factorized into a product of double
and single sums, making the computation easier. Below we provide the fac-
torization of this sum:

∑
k �=l �=i�r F̂l(F̂l−1)ÂklÂil =

∑
k �=l�r dlF̂l(F̂l−1)Âkl(

ˆ̃Γ−1xs
l )

t
∑

i�r di(F̂1i)
tei

−∑
k �=l�r F̂l(F̂l − 1)

(
Â2

kl + ÂklÂll

)
.
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Remark: The last two terms on the r.h.s. of equation (10) represent the
contribution of the variance of the model parameter estimates to the variance
of the two-step estimator. A question may therefore be raised: Is it worthwhile
correcting for the uncertainty in model parameter estimates when estimating
the variance of the two-step estimator?

5 Efficiency gain with calibration at sample level

5.1 Efficiency in estimating the model parameters

The principal goal of the first step is the appropriate estimation of the response
model. This is of particular importance in protecting the target estimates
against nonresponse bias. We can formally illustrate this in the following:

Let
Ĥ(g) =

∑
k�r

dkFkzk − t̂z (12)

with E
(
Ĥ(g◦)

)
= 0.

From Särndal et al. (1992) result 9.3.1, the covariance of Ĥ(g◦) is given
by

E
(
Ĥ(g◦)Ĥt(g◦)

)
=

∑
k�U

dk(F
◦
k − 1)zkz

t
k. (13)

We assume that the vector of estimating equations, Ĥ(g) = 0, is uniquely
solved for g = ĝ and consider assumptions (i) and (ii) in section 4. From (4)
we observe that the asymptotic variance of the response model coefficients is
given by:

Avar
(√

n (ĝ − g◦)
)
=

[
(M (g◦))

−1
]
Ψ
[
(M (g◦))

−1
]

(14)

where M (g◦) = plimn→∞ 1
n

dĤ(g◦)
dg and Ψ = plimn→∞n−1E

(
Ĥ(g◦)Ĥt(g◦)

)
.

Now, suppose that tz =
∑

U zk is known. Then (12) is defined as:

ˆ̃H(g) =
∑
k�r

dkFkzk − tz (15)

with the same properties as before except that

E

(
ˆ̃H(g◦)

ˆ̃H
t

(g◦)
)

=
∑
k,l�U

dkdl(πkl − πkπl)zkz
t
k +

∑
k�U

dk(F
◦
k − 1)zkz

t
k. (16)
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∑
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◦
k −
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◦
k−1)

F◦
k

AkkEl.
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kl+

∑
k �=l�r(1−F̂k)(1−F̂l)ÂklÂlk +
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t
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ˆ̃Γ =
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k�r dkzkF̂1k, dkl = 1/πkl, ěk = F̂kek, and ek = yk − xt
kB̂2Fr.

Note: As the third-order inclusion probability in variance estimator (11)
vanishes, the triple sum involved is easily factorized into a product of double
and single sums, making the computation easier. Below we provide the fac-
torization of this sum:

∑
k �=l �=i�r F̂l(F̂l−1)ÂklÂil =
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Remark: The last two terms on the r.h.s. of equation (10) represent the
contribution of the variance of the model parameter estimates to the variance
of the two-step estimator. A question may therefore be raised: Is it worthwhile
correcting for the uncertainty in model parameter estimates when estimating
the variance of the two-step estimator?

5 Efficiency gain with calibration at sample level

5.1 Efficiency in estimating the model parameters

The principal goal of the first step is the appropriate estimation of the response
model. This is of particular importance in protecting the target estimates
against nonresponse bias. We can formally illustrate this in the following:

Let
Ĥ(g) =

∑
k�r

dkFkzk − t̂z (12)

with E
(
Ĥ(g◦)

)
= 0.

From Särndal et al. (1992) result 9.3.1, the covariance of Ĥ(g◦) is given
by

E
(
Ĥ(g◦)Ĥt(g◦)

)
=

∑
k�U

dk(F
◦
k − 1)zkz

t
k. (13)

We assume that the vector of estimating equations, Ĥ(g) = 0, is uniquely
solved for g = ĝ and consider assumptions (i) and (ii) in section 4. From (4)
we observe that the asymptotic variance of the response model coefficients is
given by:

Avar
(√

n (ĝ − g◦)
)
=

[
(M (g◦))

−1
]
Ψ
[
(M (g◦))

−1
]

(14)

where M (g◦) = plimn→∞ 1
n

dĤ(g◦)
dg and Ψ = plimn→∞n−1E

(
Ĥ(g◦)Ĥt(g◦)

)
.

Now, suppose that tz =
∑

U zk is known. Then (12) is defined as:

ˆ̃H(g) =
∑
k�r

dkFkzk − tz (15)

with the same properties as before except that

E

(
ˆ̃H(g◦)

ˆ̃H
t

(g◦)
)

=
∑
k,l�U

dkdl(πkl − πkπl)zkz
t
k +

∑
k�U

dk(F
◦
k − 1)zkz

t
k. (16)
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Using similar arguments as those that led to (14), we have that

Avar (
√
n (ĝ − g◦)) =

[
(M (g◦))

−1
]
Φ
[
(M (g◦))

−1
]

+
[
(M (g◦))

−1
]
Ψ
[
(M (g◦))

−1
] (17)

where Φ and Ψ are the first and second components of

plimn→∞n−1E

(
ˆ̃H(g◦)

ˆ̃H
t

(g◦)
)
, respectively.

The difference between equations (17) and (14) is M̃ (g◦)=[
(M (g◦))

−1
]
Φ
[
(M (g◦))

−1
]
, which is a positive definite matrix, unless it is

a case of census. This illustrates that (12) is more appropriate than (15) in
the first step of estimation.

5.2 Efficiency in estimating the total Y

Let ˜̂g be the solution to ˆ̃H(g) = 0 and
˜̂
Y •
2step = T̂ ◦

a + T̂ ◦
c (

˜̂g − g◦) + T t
xB2 is

the corresponding equation (7) when ĝ is replaced with ˜̂g. Furthermore, if ĝa

is uncorrelated with either T̂ ◦
a =

∑
k�r dkF

◦
kEk or T̂ ◦

c =
∑

k�r dkF
◦
1kEk, where

ĝa stands for ĝ or ˜̂g, T̂ ◦
c is a non-zero vector, and given that E(ĝa − g◦) → 0

(see equation 4), we have that

V ar
(
˜̂
Y •
2step

)
− V ar

(
Ŷ •
2step

)
=

V ar
(
T̂ ◦
c (

˜̂g − g◦)
)
− V ar

(
T̂ ◦
c (ĝ − g◦)

)

+2Cov
(
T̂ ◦
a , T̂

◦
c

)(
E(˜̂g − g◦)− E(ĝ − g◦)

)
=

E
(
T̂ ◦
c (

˜̂g − g◦)(˜̂g − g◦)tT̂ ◦t
c

)
− E

(
T̂ ◦
c (ĝ − g◦)(ĝ − g◦)tT̂ ◦t

c

)

=E
(
T̂ ◦
c M̃ (g◦) T̂ ◦t

c

)
> 0.

Thus, the efficiency loss of ˜̂g resulting from calibrating with population-
level auxiliary information is indicated to yield an efficiency loss of the two-step
estimator (3).

6 Simulations

Two simulation studies were performed to illustrate the properties of the two-
step estimator and its variance. In the following, we describe the setup of each
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simulation study.

6.1 The setup

6.1.1 Study 1

We used data from a real estate survey with 4228 sampled elements of which
1783 were nonrespondents. We selected five variables from the study. A
categorical variable that was a stratum indicator in the original six-strata
study is denoted by γk = (γ1k, γ2k, γ3k, γ4k, γ5k, γ6k), where γik = 1(k�Si)
and Si is the ith stratum. Three numerical variables denoted x1, x2, and z
were transformed into logarithmic scales to reduce the variability, with the
first two being used as benchmarks and the last as a model variable. Another
numerical variable, y, was left untransformed and is the study variable. Here,
the estimation concerned estimating the population total, Y .

We performed a logistic regression fit of R to a constant and z, and the
resulting model was used as the true response probability function. Here, R
is a dichotomous variable of 1/0, i.e., respondent/nonrespondent. The true
response probabilities obtained using the model were then attached to the
respective elements and used for Bernoulli trials to generate the response sets.

The population consists of the 2445 respondents to the survey and samples
of sizes 200, 400, and 600 were selected using simple random sampling without
replacement. We assume that the chosen response model is correct, that
is, the response probabilities are estimated according to the equation q̂k =
1/ (1 + exp(−ztkĝ)), where zk = (1, zk)

t and ĝ is obtained from the first step
of estimation. The benchmark vector was a combination of γ and x given by
xk = (γt

k, xkγ
t
k)

t, while x stands for x1 or x2. The choices of x1,x2, z, and y
were based on their relationships in satisfying the following two cases:

In the first case, the estimator’s performance is analysed when the corre-
lation between benchmark and model variable is cor(x1, z) = 0.16, while the
correlations between the benchmark and the study variable and the model
variable and the study variable are cor(x1, y) = 0.59 and cor(z, y) = 0.65,
respectively. This may be the case when the model and benchmark variables
are obtained from different sources, for example, when model variables are
process data while the benchmark variables are obtained from administrative
registers. The benchmark variables are selected based on their relationship
with the survey variable, and the model variables are selected with the inten-
tion of capturing the response behavior. This means that, in general, we do
not expect a good relationship between the model and benchmark variables,
although such a relationship is possible. In the second case, we consider the
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Using similar arguments as those that led to (14), we have that

Avar (
√
n (ĝ − g◦)) =

[
(M (g◦))

−1
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Φ
[
(M (g◦))

−1
]

+
[
(M (g◦))

−1
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Ψ
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−1
] (17)

where Φ and Ψ are the first and second components of

plimn→∞n−1E

(
ˆ̃H(g◦)

ˆ̃H
t

(g◦)
)
, respectively.

The difference between equations (17) and (14) is M̃ (g◦)=[
(M (g◦))

−1
]
Φ
[
(M (g◦))

−1
]
, which is a positive definite matrix, unless it is

a case of census. This illustrates that (12) is more appropriate than (15) in
the first step of estimation.

5.2 Efficiency in estimating the total Y

Let ˜̂g be the solution to ˆ̃H(g) = 0 and
˜̂
Y •
2step = T̂ ◦

a + T̂ ◦
c (

˜̂g − g◦) + T t
xB2 is

the corresponding equation (7) when ĝ is replaced with ˜̂g. Furthermore, if ĝa

is uncorrelated with either T̂ ◦
a =

∑
k�r dkF

◦
kEk or T̂ ◦

c =
∑

k�r dkF
◦
1kEk, where

ĝa stands for ĝ or ˜̂g, T̂ ◦
c is a non-zero vector, and given that E(ĝa − g◦) → 0

(see equation 4), we have that
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2step

)
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(
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)
=

V ar
(
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c (
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c (ĝ − g◦)
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)(
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)
=
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)
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(
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(
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)
> 0.

Thus, the efficiency loss of ˜̂g resulting from calibrating with population-
level auxiliary information is indicated to yield an efficiency loss of the two-step
estimator (3).

6 Simulations

Two simulation studies were performed to illustrate the properties of the two-
step estimator and its variance. In the following, we describe the setup of each
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simulation study.

6.1 The setup

6.1.1 Study 1

We used data from a real estate survey with 4228 sampled elements of which
1783 were nonrespondents. We selected five variables from the study. A
categorical variable that was a stratum indicator in the original six-strata
study is denoted by γk = (γ1k, γ2k, γ3k, γ4k, γ5k, γ6k), where γik = 1(k�Si)
and Si is the ith stratum. Three numerical variables denoted x1, x2, and z
were transformed into logarithmic scales to reduce the variability, with the
first two being used as benchmarks and the last as a model variable. Another
numerical variable, y, was left untransformed and is the study variable. Here,
the estimation concerned estimating the population total, Y .

We performed a logistic regression fit of R to a constant and z, and the
resulting model was used as the true response probability function. Here, R
is a dichotomous variable of 1/0, i.e., respondent/nonrespondent. The true
response probabilities obtained using the model were then attached to the
respective elements and used for Bernoulli trials to generate the response sets.

The population consists of the 2445 respondents to the survey and samples
of sizes 200, 400, and 600 were selected using simple random sampling without
replacement. We assume that the chosen response model is correct, that
is, the response probabilities are estimated according to the equation q̂k =
1/ (1 + exp(−ztkĝ)), where zk = (1, zk)

t and ĝ is obtained from the first step
of estimation. The benchmark vector was a combination of γ and x given by
xk = (γt

k, xkγ
t
k)

t, while x stands for x1 or x2. The choices of x1,x2, z, and y
were based on their relationships in satisfying the following two cases:

In the first case, the estimator’s performance is analysed when the corre-
lation between benchmark and model variable is cor(x1, z) = 0.16, while the
correlations between the benchmark and the study variable and the model
variable and the study variable are cor(x1, y) = 0.59 and cor(z, y) = 0.65,
respectively. This may be the case when the model and benchmark variables
are obtained from different sources, for example, when model variables are
process data while the benchmark variables are obtained from administrative
registers. The benchmark variables are selected based on their relationship
with the survey variable, and the model variables are selected with the inten-
tion of capturing the response behavior. This means that, in general, we do
not expect a good relationship between the model and benchmark variables,
although such a relationship is possible. In the second case, we consider the
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possibility of having model variables at least moderately correlated with the
benchmark variable and want to observe the impact of this possibility on the
variance of the two-step estimator in relation to the first case. The correlations
between the variables are the following: cor(x2, z) = 0.56, cor(x2, y) = 0.53,
and cor(z, y) = 0.65. Each simulation result was based on 1000 replications.
The expected response rate was approximately 55%. The estimators are evalu-
ated in terms of relative bias (Rel.bias) and root mean squared error (RMSE).

6.1.2 Study 2

The previous study was based on real survey data, which are important in
empirical studies because theoretical findings need to be evaluated in real
environments. Although use of real data is important, sometimes freedom
to control the environment is desired, for which simulated data are usually
appropriate. Accordingly, this study is based on simulated population data
of size 2445. The estimation setup is as in the former study except that the
variables are generated as follows: x ∼ U (0, 1), z = ρx + ξ, where ρ is the

required correlation between x and z, ξ ∼ U (0, a), and a =
√
1− ρ2. The

study variable is given by y = c1U (0, x) + c2U (0, z), where c1 = c2 = 1 and
U is the uniform distribution. The coefficients c1 and c2 can be varied to
change the mean of y and/or balance or unbalance the correlations ρxy and
ρzy between x and y and between z and y, respectively. The response model
is the same as in study 1 except that the coefficient vector is given by g◦ =
(−1.5, 2.0)

t
. We also created a categorical variable, γk = (γ1k, γ2k, γ3k, γ4k),

where γik = 1(k�Si) and Si is the ith quartile of x, so that the benchmark
vector is given by xk = (γ1k, γ2k, γ3k, γ4k, xkγ1k, xkγ2k, xkγ3k, xkγ4k)

t. In the
first case, we have a correlation between x and z of 0.2, between x and y of
0.49, and between z and y of 0.53, while in the second case these correlations
are 0.7, 0.62, and 0.65, respectively.

6.2 Simulation results

Below we present the simulation results of each of the above studies. The
simulations illustrate the ability of the suggested two-step variance estimator
to estimate the variance of the two-step calibration estimator. The variance
estimator of the two-step estimator (Särndal and Lundström 2005) is used
as a benchmark in assessing the performance of our suggested method. The
results also enable us to respond to the question raised in Remark, that is,
whether it is important to correct for the variance in model parameter esti-
mation when estimating the variance of the two-step estimator. In Tables 1–4
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below, Ŷ stands for Ŷ2LC or Ŷ2step. In each table, Ŷ2step is followed by two

results in the column “Rel.bias of V̂ ar(Ŷ )”, the first of which is the relative

bias of the corrected variance estimator, V̂cor = V̂ ar
(
Ŷ2step

)
, and the second,

within parentheses, is the relative bias of the uncorrected variance estimator,

V̂uncor = V̂ ar
(
T̂a

)
.

6.2.1 Results of study 1

Table 1 presents the results of the first simulation study when the correla-
tion between model and benchmark variables is 0.16, while in Table 2 their
correlation is 0.56. In all tables CICR stands for confidence interval coverage
rate.

Table 1: Simulation results of study 1, first case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)
) CR

200
Ŷ2LC –0.23% 194 –25% 10627 86

Ŷ2step –0.35% 203 03(01)% 29915 94

400
Ŷ2LC –0.16% 130 –35 % 5999 68

Ŷ2step –0.17 % 131 09 (19) % 4950 82

600
Ŷ2LC –0.09% 103 –17 % 2082 85

Ŷ2step –0.11% 106 06 (15)% 4325 84

Table 2: Simulation results of study 1, second case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)

CR

200
Ŷ2LC –0.09% 188 –32 15184 61

Ŷ2step –0.19% 188 –17(–21)% 13978 64

400
Ŷ2LC –0.14 % 123 –36% 6011 84

Ŷ2step –0.14 % 124 –06(–07) % 4469 90

600
Ŷ2LC –0.12% 99 –19% 2550 84

Ŷ2step –0.14% 99 –03(–03)% 2487 90

Tables 1–2 present the results of the first simulation study, which is based
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possibility of having model variables at least moderately correlated with the
benchmark variable and want to observe the impact of this possibility on the
variance of the two-step estimator in relation to the first case. The correlations
between the variables are the following: cor(x2, z) = 0.56, cor(x2, y) = 0.53,
and cor(z, y) = 0.65. Each simulation result was based on 1000 replications.
The expected response rate was approximately 55%. The estimators are evalu-
ated in terms of relative bias (Rel.bias) and root mean squared error (RMSE).

6.1.2 Study 2

The previous study was based on real survey data, which are important in
empirical studies because theoretical findings need to be evaluated in real
environments. Although use of real data is important, sometimes freedom
to control the environment is desired, for which simulated data are usually
appropriate. Accordingly, this study is based on simulated population data
of size 2445. The estimation setup is as in the former study except that the
variables are generated as follows: x ∼ U (0, 1), z = ρx + ξ, where ρ is the

required correlation between x and z, ξ ∼ U (0, a), and a =
√
1− ρ2. The

study variable is given by y = c1U (0, x) + c2U (0, z), where c1 = c2 = 1 and
U is the uniform distribution. The coefficients c1 and c2 can be varied to
change the mean of y and/or balance or unbalance the correlations ρxy and
ρzy between x and y and between z and y, respectively. The response model
is the same as in study 1 except that the coefficient vector is given by g◦ =
(−1.5, 2.0)

t
. We also created a categorical variable, γk = (γ1k, γ2k, γ3k, γ4k),

where γik = 1(k�Si) and Si is the ith quartile of x, so that the benchmark
vector is given by xk = (γ1k, γ2k, γ3k, γ4k, xkγ1k, xkγ2k, xkγ3k, xkγ4k)

t. In the
first case, we have a correlation between x and z of 0.2, between x and y of
0.49, and between z and y of 0.53, while in the second case these correlations
are 0.7, 0.62, and 0.65, respectively.

6.2 Simulation results

Below we present the simulation results of each of the above studies. The
simulations illustrate the ability of the suggested two-step variance estimator
to estimate the variance of the two-step calibration estimator. The variance
estimator of the two-step estimator (Särndal and Lundström 2005) is used
as a benchmark in assessing the performance of our suggested method. The
results also enable us to respond to the question raised in Remark, that is,
whether it is important to correct for the variance in model parameter esti-
mation when estimating the variance of the two-step estimator. In Tables 1–4
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below, Ŷ stands for Ŷ2LC or Ŷ2step. In each table, Ŷ2step is followed by two

results in the column “Rel.bias of V̂ ar(Ŷ )”, the first of which is the relative

bias of the corrected variance estimator, V̂cor = V̂ ar
(
Ŷ2step

)
, and the second,

within parentheses, is the relative bias of the uncorrected variance estimator,

V̂uncor = V̂ ar
(
T̂a

)
.

6.2.1 Results of study 1

Table 1 presents the results of the first simulation study when the correla-
tion between model and benchmark variables is 0.16, while in Table 2 their
correlation is 0.56. In all tables CICR stands for confidence interval coverage
rate.

Table 1: Simulation results of study 1, first case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)
) CR

200
Ŷ2LC –0.23% 194 –25% 10627 86

Ŷ2step –0.35% 203 03(01)% 29915 94

400
Ŷ2LC –0.16% 130 –35 % 5999 68

Ŷ2step –0.17 % 131 09 (19) % 4950 82

600
Ŷ2LC –0.09% 103 –17 % 2082 85

Ŷ2step –0.11% 106 06 (15)% 4325 84

Table 2: Simulation results of study 1, second case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)

CR

200
Ŷ2LC –0.09% 188 –32 15184 61

Ŷ2step –0.19% 188 –17(–21)% 13978 64

400
Ŷ2LC –0.14 % 123 –36% 6011 84

Ŷ2step –0.14 % 124 –06(–07) % 4469 90

600
Ŷ2LC –0.12% 99 –19% 2550 84

Ŷ2step –0.14% 99 –03(–03)% 2487 90

Tables 1–2 present the results of the first simulation study, which is based
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on real survey data. The results suggest that the two-step estimator Ŷ2step is
almost unbiased, having generally slightly larger Rel.bias and RMSE than the
benchmark. With regard to variance estimators, the results indicate that the
Rel.bias of the corrected V̂cor and uncorrected V̂uncor variance estimators are
low compared with the benchmark. In Table 1, the biases of these variance
estimators are positive while those of the benchmark variance estimator are
negative. In Table 2, all variance estimators have negative biases. In Table
1, the RMSE of V̂cor is larger than that of the benchmark, except when the
sample size (n) is 400, while in Table 2, V̂cor has smaller RMSE values for
all sample sizes. The tables also show that V̂cor has a smaller absolute rela-
tive bias than does V̂uncor, except in Table 1 for n = 200 and in Table 2 for
n = 600. In Table 2, the Rel.bias values of V̂cor and V̂uncor are decreasing
in absolute values and converging to the same level. These properties are
not observed in Table 1, however. The estimated confidence interval coverage
rates (CICR) are generally larger for Ŷ2step than the benchmark, increasing
for both estimators with increasing sample size, but are less than 95%.

6.2.2 Results of study 2

The results of the second simulation study are shown in Tables 3–4.

Table 3: Simulation results of study 2, first case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)

CR

200
Ŷ2LC –0.22% 70 –17 % 1090 52

Ŷ2step –0.67% 71 –09(–04)% 1307 67

400
Ŷ2LC –0.15% 50 –18% 529 87

Ŷ2step –0.30% 50 –14 (–01)% 474 85

600
Ŷ2LC –0.08% 39 –15% 261 88

Ŷ2step –0.15% 40 –19 (–24)% 342 88

Tables 3–4 present the results of the second simulation study based on
simulated data. As in the former study, the two-step estimator Ŷ2step is al-
most unbiased but presenting slightly larger Rel.bias (except in Table 4 when
n = 400) than the benchmark estimator. Regarding the variance estimators,
Table 4 also shows that the Rel.bias of the corrected V̂cor and uncorrected
V̂uncor variance estimators are low compared with the benchmark and tend
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Table 4: Simulation results of study 2, second case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)

CR

200
Ŷ2LC –0.04% 83 –25% 2045 80

Ŷ2step –0.33% 84 –09 (–17)% 5317 81

400
Ŷ2LC –0.13% 63 –33% 1338 82

Ŷ2step –0.27% 59 –07 (–14)% 909 88

600
Ŷ2LC 0.13% 46 –19% 442 91

Ŷ2step 0.07% 47 –06(–09)% 450 91

to decrease in absolute value with increasing sample size. Furthermore, the
relative biases of these variance estimators tend to converge to the same level.
Table 4 also shows that the RMSE is larger for V̂cor than for V̂ ar(Ŷ2LC), ex-
cept when n = 400, which is the same behavior in Table 3. The estimated
coverage rates for Ŷ2step are generally not less than the benchmark and, for
both estimators, tend to increase with increasing sample size, but remain less
than 95%.

7 Discussion

Above we present the illustrative results of the two-step calibration estimator
Ŷ2step. The results are based on two simulation setups, one based on data
from a real estate survey, the other based on simulated data. The results
given in Tables 1–4 indicate that Ŷ2step have very low bias levels, however,

tends to have a slightly larger bias than Ŷ2LC , except when n = 600 in Table
4, in which case the sign of the bias is positive. The slightly larger bias
for Ŷ2step than Ŷ2LC may be because zk is reused in the second step of the

Ŷ2LC estimator, while the estimator Ŷ2step, uses it only in the first step. One
alternative is to reuse zk in the second step of estimation, which we expect
to further reduce the bias of Ŷ2step. The RMSE values for Ŷ2LC and Ŷ2step

are generally comparable. To assess the role of the auxiliary information used
here, we have also calculated the expansion estimator, ŶExp (Särndal and
Lundström 2005, p. 68), obtaining relative biases of –7% and –8% for the
first and second studies, respectively. These relative biases are much larger
than those obtained with the two-step estimators under consideration.

In virtually all tables, the Rel.bias of V̂cor is smaller in absolute value
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on real survey data. The results suggest that the two-step estimator Ŷ2step is
almost unbiased, having generally slightly larger Rel.bias and RMSE than the
benchmark. With regard to variance estimators, the results indicate that the
Rel.bias of the corrected V̂cor and uncorrected V̂uncor variance estimators are
low compared with the benchmark. In Table 1, the biases of these variance
estimators are positive while those of the benchmark variance estimator are
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n = 600. In Table 2, the Rel.bias values of V̂cor and V̂uncor are decreasing
in absolute values and converging to the same level. These properties are
not observed in Table 1, however. The estimated confidence interval coverage
rates (CICR) are generally larger for Ŷ2step than the benchmark, increasing
for both estimators with increasing sample size, but are less than 95%.

6.2.2 Results of study 2

The results of the second simulation study are shown in Tables 3–4.
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Ŷ
)

V̂ ar
(
Ŷ
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Ŷ2step –0.30% 50 –14 (–01)% 474 85

600
Ŷ2LC –0.08% 39 –15% 261 88

Ŷ2step –0.15% 40 –19 (–24)% 342 88

Tables 3–4 present the results of the second simulation study based on
simulated data. As in the former study, the two-step estimator Ŷ2step is al-
most unbiased but presenting slightly larger Rel.bias (except in Table 4 when
n = 400) than the benchmark estimator. Regarding the variance estimators,
Table 4 also shows that the Rel.bias of the corrected V̂cor and uncorrected
V̂uncor variance estimators are low compared with the benchmark and tend
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Table 4: Simulation results of study 2, second case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)

CR

200
Ŷ2LC –0.04% 83 –25% 2045 80

Ŷ2step –0.33% 84 –09 (–17)% 5317 81

400
Ŷ2LC –0.13% 63 –33% 1338 82

Ŷ2step –0.27% 59 –07 (–14)% 909 88

600
Ŷ2LC 0.13% 46 –19% 442 91

Ŷ2step 0.07% 47 –06(–09)% 450 91

to decrease in absolute value with increasing sample size. Furthermore, the
relative biases of these variance estimators tend to converge to the same level.
Table 4 also shows that the RMSE is larger for V̂cor than for V̂ ar(Ŷ2LC), ex-
cept when n = 400, which is the same behavior in Table 3. The estimated
coverage rates for Ŷ2step are generally not less than the benchmark and, for
both estimators, tend to increase with increasing sample size, but remain less
than 95%.

7 Discussion

Above we present the illustrative results of the two-step calibration estimator
Ŷ2step. The results are based on two simulation setups, one based on data
from a real estate survey, the other based on simulated data. The results
given in Tables 1–4 indicate that Ŷ2step have very low bias levels, however,

tends to have a slightly larger bias than Ŷ2LC , except when n = 600 in Table
4, in which case the sign of the bias is positive. The slightly larger bias
for Ŷ2step than Ŷ2LC may be because zk is reused in the second step of the

Ŷ2LC estimator, while the estimator Ŷ2step, uses it only in the first step. One
alternative is to reuse zk in the second step of estimation, which we expect
to further reduce the bias of Ŷ2step. The RMSE values for Ŷ2LC and Ŷ2step

are generally comparable. To assess the role of the auxiliary information used
here, we have also calculated the expansion estimator, ŶExp (Särndal and
Lundström 2005, p. 68), obtaining relative biases of –7% and –8% for the
first and second studies, respectively. These relative biases are much larger
than those obtained with the two-step estimators under consideration.

In virtually all tables, the Rel.bias of V̂cor is smaller in absolute value
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than the benchmark, except in Table 3 when n = 600. The Rel.bias of V̂cor

is positive in Table 1 and negative in others, this inconsistency is associated
with some very small probability estimates producing very large weights that
influence the estimated entities. When the benchmark is at least moderately
correlated with the model variable, the Rel.bias of V̂cor tends to decrease in
absolute value with increasing sample size. The properties mentioned above
are no longer observed when the correlation between benchmark and model
variables is low. Another indicator of the performance of the suggested vari-
ance is the estimated confidence interval coverage rate, which suggests that
our proposed variance estimator works well, as it generally leads to a coverage
rate that is no less than that of the benchmark estimator. In Tables 2 and 4,
the coverage rates increase with decreasing Rel.bias of V̂cor.

Regarding the question in the Remark, the results indicate that, with
correlated model and benchmark variables, it is worth correcting for the un-
certainty in model parameter estimation for small sample sizes in which V̂cor

tends to have a smaller bias than does V̂uncor. In large samples, the differences
between V̂uncor and V̂cor are small. With low correlation between model and
benchmark variables, it is not clear whether or not this correction is impor-
tant, as we can see in Tables 1 and 3 that some situations favour V̂cor while
others favour V̂uncor.

The overal conclusion is that inferences will be reasonably valid when good
benchmarks are available and not too small samples are considered.
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Appendix

From (9)we have that: V ar
(
Ŷ •
2step

)
= V ar(T̂ ◦

a ) + V ar(T̂ ◦
b ) + 2Cov(T̂ ◦

b , T̂
◦
a ),

where
T̂ ◦
a =

∑
k�s RkdkF

◦
kEk, T̂

◦
b =

∑
k,l�s Rk(RlF

◦
l − 1)Akl

and

Akl = dkdlz
t
l

(
F◦

1kΓ
−1

)t
Ek.

From Särndal et al. (1999), V ar(T̂w) = EpVq(T̂w) + VpEq(T̂w) with T̂w

standing for T̂ ◦
a or T̂ ◦

b .
Then,
V ar(T̂ ◦

b ) = VpEq(
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Where S1 is for l = j, S2 for l = j and k = i, S3 for k = j and l = i, S4

for l = i = j and k = l = j, S5 for k = l = i = j, and zero for other index
combinations.
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Appendix
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Abstract: Nonresponse is a major impediment to valid inference in sample surveys. In the nonre-
sponse scenario, the driver of successful estimation is the efficient use of available auxiliary infor-
mation. As electronic devices provide considerable data storage capacities, at the estimation stage
it is natural for survey statisticians to face large datasets of auxiliary variables. It is unwise to use
all available data as doing so may lead to poor estimators, especially if some variables are strongly
correlated. Furthermore, selecting a subset of available auxiliary variables may not be the best alter-
native given the issues related to selection criteria. In this paper, we propose reducing the dimensions
of the original set of auxiliary variables by using principal components. The use of principal compo-
nents in place of the original auxiliary variables is evaluated via two calibration approaches, linear
calibration using no explicit response model and propensity calibration of a known response model.
For the latter, we propose selecting components based on their canonical correlation with the model
variables. The results of two simulation studies suggest that using principal components is appropri-
ate, as it offers the great advantage of reducing the computational burden.

1. Introduction

When adjusting for nonresponse in sample surveys, auxiliary information plays a prominent role in
successful estimation. Rizzo, Kalton and Brick (1996) note that, providing it is carefully chosen, the
particular adjustment scheme used at the estimation stage is not that important. The relation with the
study variable or response pattern is usually taken as a benchmark in the choice of auxiliary variables
(see Kreuter and Olson, 2011; Särndal and Lundström, 2005, p. 110).

Calibration estimation (Deville and Särndal, 1992), initially designed to reduce sampling error in
surveys with complete response, was eventually extended to surveys affected by nonresponse, (see
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e.g. Lundström and Särndal, 1999; Kott, 2006). The method relies on an efficient choice of auxiliary
variables.

When many auxiliary variables are available, calibrating on all of them may lead to ‘over-
calibration’, the term used by Guggemos and Tillé (2010). According to Särndal and Lundström
(2005), a problem may arise when the candidate auxiliary vector contains variables likely to cause
multicollinearity or variables with highly skewed distributions. These problems may result in a
very inefficient estimator almost less efficient than, for example, the Horvitz-Thompson estimator
(Cardot, Goga and Shehzad, 2015).

Large sets of auxiliary variables have also been considered by many authors in various estimation
settings, as in the following examples, Bardsley and Chambers (1984) propose a ridge-type estimator
in the context of model-based estimation, an approach that relaxes the principle that the calibration
weights ‘exactly’ reproduce the totals of known characteristics by holding only ‘approximately’.
Guggemos and Tillé (2010) introduce a penalized calibration estimator. Bilen, Khan and Yadav
(2004) suggest a principal component approach for reducing the multicollinearity and dimensions of
the auxiliary variables in a regression context. Cardot et al. (2015) propose calibration on reduced
data via principal components (PCs) in surveys with complete response.

Variable selection criteria are also suggested in the literature as an alternative way to deal with
large sets of auxiliary variables and related problems. McHenry (1978) suggests an algorithm to
select the best subset of auxiliary variables in the context of multiple regression or multivariate anal-
ysis. Silva and Skinner (1997) suggest a selection criterion based on the variability of the regression
estimator. Särndal and Lundström (2007) propose a selection device based on the variability of esti-
mated inverse propensities determined under the assumption that the auxiliary variables satisfy some
pre-specified condition. The variable selection is conditioned on an increase in the variability of the
inverse propensities. A potential auxiliary variable must predict the key survey variables and the
propensities to respond. Geuzinge, Rooijen and Bakker (2000) propose a selection indicator based
on the product of (a) the correlation between the auxiliary vector and the study variables and (b)
the correlation between the auxiliary vector and the response propensity. When adjusting for nonre-
sponse through regression estimation, Bethlehem and Schouten (2004) and Schouten (2007) propose
a selection based on minimizing the maximal absolute bias of the estimator; the method relies on
computing an interval for the maximal absolute bias and selecting those variables that minimize its
width.

The common practice of using a subset of the full set of potential auxiliary variables and discard-
ing others may result in the loss of important information. For example, in a regression context, it
is known that the R2 tends to decrease with the removal of regressors from the regression equation.
This phenomenon can be interpreted in many ways, but in some cases is due to the loss of valuable
information. Furthermore, most of the suggested selection algorithms are computationally intensive
and, impractical for large sets of candidate auxiliary variables.

In this paper, we calibrate on reduced data via principal components. Thus, we account for
the exponential growth in computing time due to dimensionality in the auxiliary data and most
importantly, the problem of large weights due to outliers is also accounted turning the estimator
more efficient. The idea was initially suggested by Cardot et al. (2015) in surveys with complete
response, and we extend it to estimation in surveys affected by nonresponse. Furthermore, the
ideas in Cardot et al. (2015) are centered on the Greg-type-calibration (the complete response linear

CALIBRATING ON PRINCIPAL COMPONENTS FOR NONRESPONSE ADJUSTMENT 3

calibration), while we study this and the propensity score calibration estimators in the nonresponse
context. Note that the use of principal components in weighting does not stand for data interpretation,
but is a tool for alleviating the problem of managing high-dimensional auxiliary data. Specifically,
the PCs approach assists in the construction of new auxiliary variables from the original variables by
taking into account all available candidate variables through linear combinations. Furthermore, we
implement a rejection of PCs based on their canonical correlation (Hotelling, 1939) with the model
variables.

Two calibration estimators are considered in the paper:

1. Linear calibration (LC) using no explicit form of response model Särndal and Lundström
(2005).

2. Instrumental variable or propensity score calibration (PSC) with an explicit form of response
model (Chang and Kott, 2008).

This suggests two sources of auxiliary information for estimation: an X(N×P) data matrix carry-
ing information on the N population elements of a P-dimensional vector of auxiliary variables and
an H(m×L) data matrix carrying information on the m respondent elements of an L-dimensional vec-
tor of instrumental variables. The LC estimator uses only the first source of auxiliary information,
while the PSC combines the two sources.

The rest of the article is organized as follows: section 2 provides background information on
calibration estimators for nonresponse adjustment; section 3 provides a summary theoretical frame-
work on principal components; section 4 provides a theoretical combination of calibration estimators
and principal components; section 5 provides numerical support for section 4; and the final section
discusses the results.

2. Calibration Estimators

Define a finite population, U , of distinguishable units indexed by integers 1,2, ...,k, ...,N. A prob-
ability sample, s, of distinguishable elements indexed by integers 1,2, ...,k, ...,n is drawn from U
according to a probability sampling design, p(s), yielding the first- and second-order inclusion prob-
abilities, πk = P(k ∈ s)> 0 and πkl = P(k&l ∈ s)> 0, respectively for all k, l ∈ {1,2, ...,N}, where
πkk = πk. Suppose that data are observed for subset r ⊂ s with |r| = m. The elements of r are
assumed to be generated by a random process, q(r), on s. Thus, each element k ∈ r is associated
with probability θk = P(k ∈ r|k ∈ s)> 0. The random process q(r) on a given s is usually termed a
response mechanism, while θk is the response probability for the individual k. Here, it is assumed
that events k ∈ r and l ∈ r for a given s are independent of one another given that k �= l.

Calibration estimators were introduced by Deville and Särndal (1992) in the context of surveys
with complete response; the approach was then extended to surveys affected by nonresponse. In this
context, Särndal and Lundström (2005) define the calibration estimator for total ty = ∑U yk as,

t̂ycal = wt
(r)y(r) (1)

where w(r) = vec{wk}m and y(r) = vec{yk}m are m-dimensional column vectors of calibrated weights
wk and study variable values yk respectively. The term ‘calibrated weights’ means that the weights
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satisfy the calibration property Xt
(r)w(r) = Tx, where Tx = ∑U Xk and Xk being the transpose of the

kth line of X(N×P). Calibrated weights, wk, are constructed to be as close as possible to the recipro-
cals of the sample inclusion probabilities, dk = 1/πk, according to a distance metric Ω

(
w(r);d(r)

)
,

while satisfying the above calibration property. Using Lagrange reasoning, calibrated weights can
be derived by minimizing Ω(w(r);d(r))+ γ t

(
Tx −Xt

rw(r)
)
, where γ is a column vector of Lagrange

multipliers, d(r) = vec{dk}m. The resulting calibrated weights take the form

wk = dkh(γ tXk) (2)

where dkhk = ψ−1(·,dk), ψ = ∂Ω/∂w, given the assumptions in Deville and Särndal (1992).
A different choice of Ω leads to a different weight system (2). Deville and Särndal (1992)

establish conditions under which any choice of distance function leads to estimators that are asymp-
totically equivalent to the regression estimator obtained through a Chi-square-type distance measure.
Thus, the choice of distance measure may be influenced by the computational aspects or other prop-
erties of wk, such as its non-negativity or degree of stability.

Using the Chi-square distance, i.e., Ω(w(r);d(r)) =
(
w(r)−d(r)

)t
(2D)−1 (w(r)−d(r)

)
, with D =

diag{d1,d2, ...,dk, ...,dm}, leads to the linear calibrated weights of the form

wk = dk +dkγ tXk (3)

where γ =
(

Xt
(r)DX(r)

)−1(
Tx −Xt

(r)d(r)

)
.

The linear calibration estimator for ty is:

t̂ycal = wt
(r)y(r) = dt

(r)e(r) +Tt
x

(
Xt
(r)DX(r)

)−1
Xt
(r)Dy(r) (4)

where, e(r) = vec{ek}m and y(r) = vec{yk}m are m-dimensional column vectors of residuals ek =

yk − ŷk and study variable values yk respectively, and ŷk = Xt
k

(
Xt
(r)DX(r)

)−1
Xt
(r)Dy(r).

In the complete response context, estimator (4) is equivalent to the GREG estimator (Särndal,
Swensson and Wretman, 1992) derived under superpopulation model ξ , which assumes a linear
relationship between the survey variable, yk, and the auxiliary vector, Xk, given by ξ : yk = β tXk+εk.
Since, Xt

(s)d(s) is unbiased for Tx, the weights (3) are in average equal to dk which leads to zero
average differences yk − ŷk.

3. A brief summary of principal components

Suppose that X is defined as in Section 1 except that each X j, j = 1, ...,P is rescaled to zero mean
and unit variance, then, XtX is the covariance matrix of X. Let (λ j,b j; j = 1, ...,P ) be eigenvalue-
eigenvector pairs of XtX. The jth principal component is given by Z j = bt

jX = ∑P
l=1 bl jXl with the

properties cov(Z j,Zi) =

{
0, j �= i
λi, j = i

, b j is a P-dimensional column vector and the λi, i = 1, ...,P

satisfy λ1 ≥ λ2 ≥, ...,≥ λP ≥ 0. The proportion of total variance accounted for by the first R < P
principal components is given by

(
∑R

i=1 λi/∑P
i=1 λi

)×100%.
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Suppose now that X = X(s), that is, auxiliary data observed only at sample level. The covariance
matrix of X(s) is estimated without bias by XtDX, where D = diag{d1,d2, ...,dk, ...,dn}. The esti-
mated principal components are given by Ẑ j = b̂t

jX(s) = ∑P
l=1 b̂l jXl(s). The pair (λ̂ j, b̂ j; j = 1, ...,P)

comprise the eigenvalue and eigenvector of XtDX.

4. Calibrating on principal components

The calibration estimator in the principal components setting can be derived by solving the following
problem:

minΩ(wpc
(r);d(r))sub : Zt

(r)w
pc
(r) = Tz , (5)

4.1. The linear calibration estimator based on principal components

If we follow the same reasoning that led to weights (3), we will then arrive at principal components
calibrated weights given by

wpc
k = dk +dkγ t

(pc)Zk (6)

where, γ(pc) =
(

Zt
(r)DZ(r)

)−1(
Tt

z −Zt
(r)d(r)

)
and Zk = {Zk1,Zk2, ...,ZkR|R < P} is the vector whose

elements are the retained components. The nonresponse principal-components-based calibration
estimator for ty is given by

t̂ycal(pc) = dt
(r)e

pc
(r) +Tt

z

(
Zt
(r)DZ(r)

)−1
Zt
(r)Dy(r) (7)

where epc
(r) = vec

{
yk −Zt

k

(
Zt
(r)DZ(r)

)−1
Zt
(r)Dy(r)

}r

.

4.2. The propensity score calibration based on principal components

Consider a framework of unit response resulting according to a known parametric model, φ−1(·;Hk).
Observe that this model is known only up to an unknown L-dimensional vector of parameters, δ =

δ ∗, where δ ∈ ϒ, dim(Hk) = L � R and R is the number of selected PCs. Then, the model parameters
can be estimated from the calibration constraint below (see Kott, 2012).

Zt
(r)Φ(δ )d(r)−Tz = 0 (8)

where dim(Z(r)) = m×R and Φ(δ ) = diag{φ(δ ;H1),φ(δ ;H2), ...,φ(δ ;Hk), ...,φ(δ ;Hm)}. This is
a principle suggested by Chang and Kott (2008). The solution to (8) is the minimizer of the objective
function: (

Zt
(r)Φ(δ )d(r)−Tz

)t
Wn

(
Zt
(r)Φ(δ )d(r)−Tz

)
. (9)

When L = R, the form of weighting matrix Wn of dimension R×R is irrelevant, as system (8)
is just identified, otherwise Wn is a suitably chosen nonnegative definite matrix. Note that Zk is an
R-dimensional column vector of retained principal components of P originals. Under this setting, to
make the system of equations (8) feasible, the minimal requirement is that the number of PCs in Zk

be at least L retained components.
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)
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(
Tx −Xt

rw(r)
)
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x
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Xt
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Xt
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∑R

i=1 λi/∑P
i=1 λi
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l=1 b̂l jXl(s). The pair (λ̂ j, b̂ j; j = 1, ...,P)
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where epc
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When L = R, the form of weighting matrix Wn of dimension R×R is irrelevant, as system (8)
is just identified, otherwise Wn is a suitably chosen nonnegative definite matrix. Note that Zk is an
R-dimensional column vector of retained principal components of P originals. Under this setting, to
make the system of equations (8) feasible, the minimal requirement is that the number of PCs in Zk
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Having estimated the response model parameter, δ ∗, the calibration estimator for ty (the propen-
sity score calibration) is

t̂PSC(pc) = ∑
r

dkφ(δ̂
t
(pc)Zk)yk (10)

where δ̂ (pc) is the estimated value of δ . To obtain δ̂ (pc), we can follow the ideas by Beaumont (2006),
who propose an iterative procedure based on the Taylor approximation of (8). This is similar to the
procedure suggested by Binder (1983). We apply a slightly different perspective in the estimation of
δ in (8).

Assume the following conditions to hold:

1. Function φ(δ ) is continuous and twice differentiable with respect to δ .

2. Epq

(
Zt
(r)Φ(δ )d(r)−Tz

)
= 0 if and only if δ = δ ∗ for all δ ∈ ϒ

3. Set ϒ is a compact set .

4. Epq

[(
Zt
(r)Φ(δ )d(r)−Tz

)(
Zt
(r)Φ(δ )d(r)−Tz

)t
]

is finite

5. Zt
(r)Ψ(δ )H = ∂

∂δ

(
Zt
(r)Φ(δ )d(r)−Tz

)
= ∑r dkφ1(Hk;δ )ZkHt

k exists and is continuous in ϒ,

where φ1(Hk;δ ) = ∂φ(Hk;δ )/∂δ and the m×m diagonal matrix Ψ(δ ) has its kth diagonal
element given by dkφ1(Hk;δ )

6. Zt
(r)Ψ(δ )H is a full-column rank matrix.

Define the quadratic distance as follows:
(

Zt
(r)Φ(δ )d(r)−Tz

)t Wn

2

(
Zt
(r)Φ(δ )d(r)−Tz

)
. (11)

The solution to (8) is defined as the minimizer of objective function (11). In the generalized
method of moments setting, minimizing (11) is equivalent to solving the set of estimating equations
defined by (

Zt
(r)Ψ(δ )H

)t
Wn

(
Zt
(r)Φ(δ )d(r)−Tz

)
= 0. (12)

We use the following approximation:
(

Zt
(r)Φ(δ ∗)d(r)−Tz

)
≈
(

Zt
(r)Φ(δ̂ (pc))d(r)−Tz

)
+
(

Zt
(r)Ψ(δ̂ (pc))H

)
(δ ∗ − δ̂ (pc)). (13)

Introducing equation (13) into (12) yields the following updating equation:

δ̂
1
(pc) ≈ δ̂

0
(pc) +

[(
Zt
(r)Ψ

0H
)t

Wn

(
Zt
(r)Ψ

0H
)]−1(

Zt
(r)Ψ

0H
)t

Wn

(
Zt
(r)Φ(δ 0)d(r)−Tz

)
(14)

where Ψ 0 =Ψ(δ̂
0
(pc)). In (9), δ̂ (pc) is the value of δ̂

1
(pc) obtained upon convergence of (14).

In the appendix section we provide the derivation of the asymptotic variances of the estimated
coefficients of the propensity functions when population- or sample-level auxiliary information is
used. A comparison of these variances shows that sample-level auxiliary information provides more
accurate estimated coefficients than population-level does.
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4.3. Suggested retention criterion (a canonical correlation-based criterion)

Many authors have discussed PCs retention criteria, for example, Jollifé (1972), Cadima and Jol-
lifé (1995), Jollifé, Trendafilov and Uddin (2003), and McCabe (1984), though there is no unified
recommendation on this matter (Johnson and Wichern, 2007). Common practice is based on one or
combinations of the following three criteria: the eigenvalue-one, scree plot, and proportion of total
variance explained criteria. Mansfield, Webster and Gunst (1977) noted that it is common in PCs
analysis for significant data variation to be accounted for by the first few components. According
to these criteria, the components with small variability are excluded. Note, however that we are
not concerned with interpreting PCs, instead using them as a tool for constructing new auxiliary
variables that take into account all original candidate auxiliary variables.

In a canonical correlation setting, the goal is to determine sets of linearly independent vectors
for two groups of variables that result in the maximum correlation between the projections of these
variables onto the space spanned by these linearly independent vectors. According to Borga (2001),
the correlation between two sets of multidimensional variables, if it exists, may be blurred if an
inappropriate coordinate system is used to represent the variables. However, in canonical correlation,
each of the two sets is linearly transformed, so that the corresponding pairs of coordinates of these
transformed variables have the maximum correlation.

Recall that H is an m×L data matrix where H1,H2, ...,HL are the model variables and let, Z̃ be
an m×D data matrix, where 1 ≤ D ≤ P is the number of principal component variables in Z̃. Let PH
be the projection of H onto the space spanned by linear combinations of its elements and suppose
that PZ̃ is the analogous projection of elements in Z̃. We want to approximate the correlation (ρ̃H,Z̃)
of sets H and Z̃ by the canonical correlation defined by max

PH,PZ̃
Γ
�
PHHt ,PZ̃Z̃t

�
.

ρ̃H,Z̃ ≡ max
PH,PZ̃

Γ
�
PHHt ,PZ̃Z̃t�= max

PH,Pz̃

�
PH

�
Ht Z̃

�
Pt

Z̃

�

�
PH (HtH)Pt

H
�1/2

�
PZ̃

�
Z̃t Z̃

�
Pt

Z̃

�1/2 (15)

We can equivalently reformulate (15) as⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
�
PH

�
HtZ̃

�
Pt

Z̃

�

sub

⎧
⎨
⎩

�
PH

�
HtH

�
Pt

H
�1/2

= 1�
PZ̃

�
Z̃tZ̃

�
Pt

Z̃

�1/2
= 1

(16)

Using Lagrange multiplier principle, (16) is solved by maximizing the objective function

L(μ∗,P∗) =
�
PH

�
HtZ̃

�
Pt

Z̃

�−2−1 �μ1
�
PH

�
HtH

�
Pt

H−1
�−μ2

�
PZ̃

�
Z̃tZ̃

�
Pt

Z̃−1
��

yielding the system of equations⎧⎨
⎩

∂L
∂PH

=
�
Ht Z̃

�
Pt

Z̃ −μ1 (HtH)Pt
H = 0

∂L
∂PZ̃

=
�

Ht�Z
�t

Pt
H −μ2

�
Z̃t Z̃

�
Pt

Z̃ = 0.
(17)

Premultiplying the first equation in (17) by PH and subtracting PZ̃ times the second equation

from the first, results in μ1PH (HtH)Pt
H = μ2PZ̃

�
Z̃t Z̃

�
Pt

Z̃, because PH
�
Ht Z̃

�
Pt

Z̃ =
�

PH
�
Ht Z̃

�
Pt

Z̃

�t
,

where by μ1 = μ2 = μ .
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In the appendix section we provide the derivation of the asymptotic variances of the estimated
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used. A comparison of these variances shows that sample-level auxiliary information provides more
accurate estimated coefficients than population-level does.
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Assuming that HtH is invertible, the first equation gives

μPt
H =

(
HtH

)−1 (Ht Z̃
)

Pt
Z̃. (18)

After appropriate replacements in the second, we get
(
Ht Z̃

)t
(HtH)−1 (Ht Z̃

)
Pt

Z̃−μ2
(
Z̃t Z̃

)
Pt

Z̃ = 0,
which is equivalent to writing this last equation as

Qx = λRx (19)

where Q =
(
Ht Z̃

)t
(HtH)−1 (Ht Z̃

)
, x = Pt

Z̃, λ = μ2 and R =
(
Z̃t Z̃

)
.

Equation (19) is in the form of a generalized eigenvalue equation (Parra and P. Sajda, 2003). Let,
R = MMt be a Cholesky decomposition of R; then (19) becomes

(
M−1QM−1t)Mtx = λMtx ⇔ Q̃x̃ = λ x̃,

which is the standard eigenvalue equation. Solving this, we obtain a solution for PZ̃, which naturally
leads to a solution for PH in (18). These solutions represent the optimal projections of the variables in{

Z̃
}

and {H} onto spaces spanned by their respective linear combinations. The coordinate systems
resulting from PZ̃, and PH are mutually maximally correlated. See, for example, Borga (2001) and
Hardoon, Szedmak and Shawe-Taylor (2004), for more insight on canonical correlation analysis.

Our PCs selection criterion is based on the value of the canonical correlation between the PCs
and the instrumental variables. The PCs are selected in order of their appearance and the canonical
correlations are used to measure the representativeness of the selected components. The canonical
correlations are calculated in a forward stepwise manner: the first canonical correlation is the corre-
lation between the instrumental vector and a vector comprinsing the first PC; the second canonical
correlation is the maximal correlation between the instrument vector and the vector comprising the
first two PCs, and so on. The values of these canonical correlations are obtained in an increasing
order. The stopping rule is based on the amount by which this correlation increases from a previous
step to the actual step. If the addition of a further component to the vector of PCs does not sig-
nificantly change the correlation among these two groups, then that component and the remaining
components are discarded from the final auxiliary vector.

Remark 1 Unlike ZtZ, which is a diagonal matrix with eigenvalues of XtX being its diagonal
elements, matrix Z̃tZ̃ is no longer a diagonal since Z̃ is made of elements of Z falling into response
set r.

Remark 2 We maximize the relation (H, Z̃) rather than (H,Z) as the latter is impossible because
information on H is assumed to be known at response level. The variables’ distributions are generally
distorted by nonresponse and the resulting correlation is expected to deviate from the true correlation.
This is not of concern here, as the main goal is to guarantee at the response level selected auxiliary
variables closely linked to the instruments.

5. Simulation Study

This section provides empirical illustrations of the points discussed in the previous sections. It is
known, that the principal components data reduction approach is effective when the relations among
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the variables involved are strong. In this article, we present two simulation studies: in the first study,
the structure of correlation among the variables is very strong, the first principal component alone
explaining more than 90% of the total data variation, as can be observed in Figure 1; in the second
study, the structure of correlation among the variables is weak, and several components are needed to
meaningfully explain the total variation of the data, as illustrated by, the scree plot shown in Figure
2. The data source for the first study is ‘Unemployment and median household income for the U.S.,
States, and counties, 2006–2014’ from the Unemployment – Bureau of Labor Statistics – LAUS
data. The data are freely and publicly accessible for use at http://www.bls.gov/lau/. According to
the source, ‘the concepts and definitions underlying LAUS data come from the Current Population
Survey (CPS), the household survey that is the official measure of the labor force for the nation.
State monthly model estimates are controlled in real time to sum to national monthly labor force
estimates from the CPS. These models combine current and historical data from the CPS, the Current
Employment Statistics (CES) program, and State unemployment insurance (UI) systems’.

The data source for the second study is ‘Small Area Income and Poverty Estimates (SAIPE)’,
which is a 1989, 1993, and 1995–2013 dataset, also freely and publicly accessible at
https://www.census.gov/did/www/saipe/. According to the source, ‘Small Area Income and Poverty
Estimates (SAIPE) are produced for school districts, counties, and states. The main objective of this
program is to provide updated estimates of income and poverty statistics for the administration of
federal programs and the allocation of federal funds to local jurisdictions’.

5.1. Simulation setup

5.1.1. Study 1

From the data of the first study we selected 27 quantitative variables. We applied data transformation
to induce the correlation among them to a desired pattern. The transformed variables are named
v1 to v27. For example, from uncorrelated variables x1 and x2 we can generate new corresponding
correlated variables v1 = x1 and v2 = sqrt(x1∗x2), respectively. From these 27 variables, two (v1,v5),
were chosen to be the model variables, that is, the variables governing the response behaviour and
one (v27), was chosen to be the study variable y. The correlations between each model variable with
the study variable are approximately 0.5. The remaining 24 were assumed to be auxiliary variables.
These data correspond to our population of 3260 observations. The simulation process was the
following:

1. From this population, we draw a sample of size 300 according to a simple random sampling
without raplacement.

2. A response set was generated using a logistic regression model pk = 1/(1+ exp(−δ tHk)),
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Assuming that HtH is invertible, the first equation gives

μPt
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(
HtH

)−1 (Ht Z̃
)

Pt
Z̃. (18)
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)
Pt
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(
Z̃t Z̃

)
Pt
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(
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)
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Z̃
}
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the variables involved are strong. In this article, we present two simulation studies: in the first study,
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meaningfully explain the total variation of the data, as illustrated by, the scree plot shown in Figure
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State monthly model estimates are controlled in real time to sum to national monthly labor force
estimates from the CPS. These models combine current and historical data from the CPS, the Current
Employment Statistics (CES) program, and State unemployment insurance (UI) systems’.
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the study variable are approximately 0.5. The remaining 24 were assumed to be auxiliary variables.
These data correspond to our population of 3260 observations. The simulation process was the
following:

1. From this population, we draw a sample of size 300 according to a simple random sampling
without raplacement.

2. A response set was generated using a logistic regression model pk = 1/(1+ exp(−δ tHk)),
where H = {1,v1,v5}t is a vector of model variables whereas δ is a vector of model parame-
ters. The elements kεs for which a Bernoulli trial was 1 with probability pk, were selected to
the reponse set.

3. Estimates of interest were calculated using the data in the respose set.

4. The process was repeated 1000 times. Higher replication numbers basically produced similar
results.
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5. Indicators of the properties of the estimators were calculated. These indicators are the relative
bias (Rel.bias = bias(θ̂)

θ ∗100%), the standard error (S.E. = sqrt(var(θ̂))), and the root mean
squared error (RMSE = sqrt(bias(θ̂)2+var(θ̂)), where, bias(θ̂) = mean(θ̂)−θ , mean(θ̂) =
∑1000

i=1 θ̂i
1000 , and var(θ̂) = 1

999 ∑1000
i=1 (θ̂i −mean(θ̂))2.

The points 1 to 5 were repeated for samples of sizes 400, 500, and 600. We chose
δ = {1.311,−0.199,−0.083}t , which led to an average response rate of 57% for each sample size.

Recall that we base this article on two calibration approaches, the linear calibration (LC) estima-
tor of Särndal and Lundström (2005) and the propensity score calibration (PSC) of Chang and Kott
(2008). For the former estimator, the auxiliary vector was given by Xk = {1,v1k, ...,v26k}t , whereas
the latter used Xk = {1,v2k, ...,v4k,v6k, ...,v26k}t and Hk = {1,v1k,v5k}t .

The principal components auxiliary variables for both the LC and PSC estimators were generated
from their corresponding values of X. The retention criterion for the LC estimator was the proportion
of total variance explained by the set of selected components. This led to the selection of three
principal components in population LC, while for the PSC estimator, the retention criterion is the
one suggested in subsection 4.3. The scree plot given in Figure 1 below illustrates the population
correlation structure of the variables.

Figure 1: Scree plot of the auxiliary data in thefirst study.

5.1.2. Study 2

In this study, we perform the simulations following the same 5 points of the study 1. However,
here we use the ‘Small Area Income and Poverty Estimates’ dataset (size 3173). We selected some
variables from the 2006 and others from the 2013 data, for a total of 19 variables. The original data
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were square root transformed and the new variables were named, v1 to v19. Again we chose three
variables, two of which were used as model variables, say, v1 and v5, and the other was the study
variable, say, v19. The correlations of v1 and v5 with the study variable v19 were cor(v1,v19) = 0.52
and cor(v5,v19) = 0.45, respectively. This resembles the correlation structure of the corresponding
variables in the study 1. As in the study 1, we used δ = {1.311,−0.199,−0.083}t . The LC estimator
uses Xk = {1,v1k, ...,v18k}t whereas the PSC estimator uses Xk = {1,v2k, ...,v4k,v6k, ...,v18k}t and
Hk = {1,v1k,v5k}t . The proportion of total variance explained by the selected PCs is again the
retention criterion used for the LC estimator based on PCs. This criterion led to a selection of eight
components. The retention criterion for the PSC estimator based on PCs is again the one described
in subsection 4.3. The following is the scree plot of the principal components of the population
auxiliary data used in the second simulation study.

Figure 2: Scree plot of the auxiliary data in the second study

5.2. Simulation results

5.2.1. Results of study 1

The results are presented in two versions, a tabular version in Tables 1–4 and a graphic version
in Figures 3–6 (the figures are in the appendix). These representations show the behaviour of each
considered estimator when the sample size increases. For each table or graph, the performance of the
estimator is evaluated from two perspectives: when the estimator is based on the complete original
auxiliary variables (X) and when it is based on the PCs of the auxiliary variables.
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Tables 1 and 2 show the LC estimator results when auxiliary information is observed at the
population and sample levels, respectively. Both tables show that, the relative bias, standard error,
and the root mean squared error values of the PCs-based linear calibration are smaller than their
counterparts computed based on the original auxiliary variables.

Table 1: LC on original population auxiliary variables vs. LC on population PCs – Study 1

Sample size Properties
Estimators

L. Calibration on X L. Calibration on PCs

300
Rel.bias(%) 5.474 1.296
S.E. 3519 935
RMSE 8661 2094

400
Rel.bias(%) 4.771 1.224
S.E. 3231 872
RMSE 7616 1973

500
Rel.bias(%) 4.462 1.222
S.E. 3083 804
RMSE 7150 1941

600
Rel.Bias(%) 3.974 1.149
S.E. 3135 846
RMSE 6544 1864

Table 2: LC on original sample auxiliary variables vs. LC on sample PCs – Study 1.

Sample size Properties
Estimator

L.Calibration on X L. Calibration on PCs

300
Rel.bias(%) 3.930 0.192
S.E. 21,936 11,202
RMSE 22,660 11,206

400
Rel.bias(%) 3.341 0.037
S.E. 17,089 9621
RMSE 17,758 9621

500
Rel.bias(%) 3.551 0.328
S.E. 14,332 8250
RMSE 15,224 8263

600
Rel.bias(%) 2.951 0.369
S.E. 12,422 7608
RMSE 13,134 7626

Tables 3 and 4 show results obtained under conditions similar to those used to obtain the results
in Tables 1 and 2, except that PSC replaces LC. The results obtained by using PCs of the auxiliary
variables are comparable to the obtained using original auxiliary variables, this is true in both levels
of auxiliary information.
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Table 3: PSC on original population auxiliary variables vs. PSC on population PCs – Study 1.

Sample size Properties
Estimator

PS on X Time (in hr) PS on PCs Time (in hr)

300
Rel.bias(%) 0.280

7
0.153

0.35S.E. 16,182 15,912
RMSE 16,188 15,914

400
Rel.bias(%) 0.105

13
0.209

0.57S.E. 13,815 13,660
RMSE 13,816 13,663

500
Rel.bias(%) 0.338

22
0.434

0.83S.E. 11,953 11,837
RMSE 11,963 11,854

600
Rel.bias(%) 0.169

36
0.264

1.30S.E. 10,899 10,757
RMSE 10,902 10,764

Table 4: PSC on original sample auxiliary variables vs. PSC on sample PCs – Study 1.

Sample size Properties
Estimator

PS on X Time (in hr) PS on PCs Time (in hr)

300
Rel.bias(%) 0.255

0.25
0.125

0.18S.E. 16,162 16,010
RMSE 16,166 16,011

400
Rel.bias(%) 0.120

0.32
0.189

0.22S.E. 13,820 13,711
RMSE 13,821 13,713

500
Rel.bias(%) 0.353

0.45
0.421

0.23S.E. 11,952 11,834
RMSE 11,963 11,850

600
Rel.bias(%) 0.191

0.50
0.263

0.25S.E. 10,880 10,795
RMSE 10,884 10,801

5.2.2. Results of study 2

Tables 5–10 below present the results of this study. The process of evaluating the estimators is sim-
ilar to that used in study 1. The results of the LC, presented in Tables 5 and 6, display consistency
when comparing X-and PCs- based estimators and when comparing population- and sample-based
estimators.
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Table 5: LC on original population auxiliary variables vs LC on population PCs – Study2.

Sample size Properties
Estimator

L. Calibration on X L. Calibration on PCs

300
Rel.bias(%) 0.735 0.899
S.E. 2262 2136
MSE 2282 2168

400
Rel.bias(%) 0.810 1.077
S.E. 1871 1798
MSE 1901 1852

500
Rel.bias(%) 0.829 1.029
S.E. 1558 1529
MSE 1596 1588

600
Rel.bias(%) 0.672 0.836
S.E. 1402 1382
MSE 1429 1425

Table 6: LC on original sample auxiliary variables vs. LC on sample PCs – Study 2.

Sample size Properties
Estimator

L. Calibration on X L. Calibration on PCs

300
Rel.bias(%) 0.725 0.949
S.E. 2489 2494
MSE 2507 2525

400
Rel.bias(%) 0.882 1.205
S.E. 2068 2068
MSE 2100 2129

500
Rel.bias(%) 0.841 1.104
S.E. 1792 1814
MSE 1825 1871

600
Rel.bias(%) 0.711 0.937
S.E. 1639 1658
MSE 1666 1703

The results of the PSC estimators for the second study are displayed in Tables 7 and 8. As the LC
estimator, the PSC results are also consistent in terms of the type (X or PCs) and level (population
or sample) of the auxiliary information used.
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Table 7: PSC on original population auxiliary variables vs. PSC on population PCs – Study 2.

Sample size Properties
Estimator

PSC on X PSC on PCs

300
Rel.bias(%) 1.345 1.566
S.E. 3748 3791
MSE 3789 3846

400
Rel.bias(%) 1.627 1.925
S.E. 3293 3385
MSE 3362 3478

500
Rel.bias(%) 1.487 1.848
S.E. 2921 2994
MSE 2985 3091

600
Rel.bias(%) 1.757 2.072
S.E. 2708 2846
MSE 2804 2973

Table 8: PSC on original sample auxiliary variables vs. PSC on sample PCs – Study 2.

Sample size Properties
Estimator

PSC on X PSC on PCs

300
Rel.bias(%) 1.347 1.480
S.E. 3634 3643
MSE 3676 3695

400
Rel.bias(%) 1.482 1.701
S.E. 3166 3219
MSE 3226 3296

500
Rel.bias(%) 1.559 1.648
S.E. 2775 2815
MSE 2849 2897

600
Rel.bias(%) 1.778 1.908
S.E. 2567 2651
MSE 2672 2767

The results shown in Tables 9 and 10 comprise estimated model parameters (with associated
standard errors in parentheses) in the PSC estimation using the data of the second study.
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Table 9: Estimated model coefficients (population auxiliary information – Study 2.)
Coefficient estimates

True coefficients
(δ0, δ1, δ2)

(1.311, -0.199, -0.083)

Sample size
PSC on X PSC on PCs

δ̂0 δ̂1 δ̂2 δ̂0 δ̂1 δ̂2

300
1.129 -0.182 -0.044 1.097 -0.188 -0.026

(0.197) (0.008) (0.011) (0.247) (0.012) (0.014)

400
1.125 -0.174 -0.052 1.079 -0.176 -0.035
0.149 0.006 0.008 (0.213) (0.010) (0.010)

500
1.147 -0.178 -0.056 1.096 -0.179 -0.038

(0.133) (0.005) (0.006) (0.182) (0.008) (0.009)

600
1.140 -0.178 -0.054 1.092 -0.179 -0.037

(0.117) (0.005) (0.005) (0.190) (0.007) (0.008)

Table 10: Estimated model coefficients (sample auxiliary information – Study 2.)
Coefficient estimates

True coefficients
(δ0, δ1, δ2)

(1.311, -0.199, -0.083)

Sample size
PSC on X PSC on PCs

δ̂0 δ̂1 δ̂2 δ̂0 δ̂1 δ̂2

300
1.139 -0.177 -0.054 1.119 -0.179 -0.046

(0.092) (0.003) (0.005) (0.122) (0.005) (0.005)

400
1.149 -0.175 -0.061 1.118 -0.174 -0.052

(0.068) ( 0.003) (0.003) (0.108 ) (0.004) (0.005)

500
1.148 -0.175 -0.061 1.132 -0.175 -0.054

(0.063) (0.0002 (0.003) (0.003) (0.094) (0.004)

600
1.145 -0.175 -0.060 1.123 -0.174 -0.054
(0.06) (0.002) (0.002) (0.099) (0.003) (0.004)

6. Discussion

The results of two simulation studies are presented in the last section, and for each study we assess
two calibration approaches, the LC estimator using no explicit form of response function and the
PSC estimator with explicit functional form. Both estimators are evaluated using the original large
set of auxiliary variables (X) and using the principal components (PCs) of the original auxiliary
variables. The results of the first study are given in two versions, tabular and graphic, while the
results of the second study are given in tabular form only. The graphic form enables the convenient
visual inspection of the estimator behaviour, while the tabular form gives a quantitative illustration.
Study 1 demonstrates that the LC estimator based on principal components auxiliary variables is
always superior in terms of relative bias, standard error, and root mean squared error (RMSE), to
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its counterpart using the original auxiliary information. This is true regardless of the level of the
auxiliary information, that is, the population or sample levels, as demonstrated in Tables 1 and 2,
respectively.

There is a large discrepancy of the standard errors and RMSEs between population- and sample-
based LC estimators. The RMSE of the population-based LC estimator based on the original auxil-
iary information ranges from 6544 to 8661 while the range for its counterpart based on sample-level
auxiliary information is 13,134 to 22,660. The RMSE of the LC based on PCs auxiliary informa-
tion ranges from 1864 to 2094 and from 7626 to 11,206 for population- and sample-based auxiliary
information, respectively. Thus, the results differ greatly when comparing estimators of population-
and sample-based auxiliary information. Considerable differences are also observed in the standard
errors and RMSEs when comparing the estimators in terms of the type of auxiliary information
used, that is, original X- auxiliaries and PCs- auxiliaries. This is not a surprising behaviour of the
LC calibration estimator as this is a regression-type estimator.

In the response propensity calibration approach, auxiliary information is used in estimating re-
sponse propensities; the estimation of population characteristics then proceeds by adjusting the de-
sign weights through multiplication by the corresponding reciprocals of the estimated propensities,
which is usually called ‘double weighting’. Here, it is observed that these results are more consis-
tent. As Tables 3 and 4 illustrate, the principal-components-based estimator provides results similar
to those obtained using the original auxiliary information. This is true regardless of the level of
information on which the estimator is based. Furthermore, the results display consistency when
comparing the properties of the corresponding estimators when population- and sample-based aux-
iliary data are used. The corresponding interval ranges of the RMSEs when using population-level
auxiliary information are close to those when sample-level auxiliary information is used. As the
sample size increases, the RMSEs tend to converge to the same level, irrespective of the type (X or
PCs) or level (population or sample) of the auxiliary information. One of the major advantages of
using PCs in place of the original auxiliary variables is the computational effort measured in terms
of computational time; as reported in Tables 3–4, due to dimensionality reduction, the principal-
components-based estimates are computed much more quickly than are the estimates based on the
original auxiliary information.

Tables 5–10 report the results of the second simulation study. In contrast to the previous study,
here, the LC calibration (Tables 5–6) results are consistent regardless of the type of auxiliary infor-
mation used for estimation as well as when comparing the properties of the estimator across levels
of information. The RMSEs of the estimators lie in virtually the same interval, regardless of the
level of auxiliary information (population or sample levels) or type (original X or PCs) . A similar
observation can be made with respect to the PSC estimator in Tables 7–8. We can still compare
the performances of the LC and PSC estimators as we are using the same set of auxiliary variables,
however, the estimators are conceptually different in terms of how auxiliary information is used.

The levels of bias are approximately the same: they are less than 0.1% in study 2 while in study
1 some differences are observed, especially in the LC estimator where the bias level attains 5.5%, as
Tables 1 and 2 demonstrate. An interesting property of the auxiliary information in the PSC scheme,
is the ability to appropriately estimate the response model. Tables 9–10 provide the population- and
sample-based model-estimated coefficients, and the results suggest equally good model coefficients
estimates when PCs are used compared with estimates resulting from the use of the original X
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Table 9: Estimated model coefficients (population auxiliary information – Study 2.)
Coefficient estimates

True coefficients
(δ0, δ1, δ2)

(1.311, -0.199, -0.083)

Sample size
PSC on X PSC on PCs

δ̂0 δ̂1 δ̂2 δ̂0 δ̂1 δ̂2

300
1.129 -0.182 -0.044 1.097 -0.188 -0.026

(0.197) (0.008) (0.011) (0.247) (0.012) (0.014)

400
1.125 -0.174 -0.052 1.079 -0.176 -0.035
0.149 0.006 0.008 (0.213) (0.010) (0.010)

500
1.147 -0.178 -0.056 1.096 -0.179 -0.038

(0.133) (0.005) (0.006) (0.182) (0.008) (0.009)

600
1.140 -0.178 -0.054 1.092 -0.179 -0.037

(0.117) (0.005) (0.005) (0.190) (0.007) (0.008)

Table 10: Estimated model coefficients (sample auxiliary information – Study 2.)
Coefficient estimates

True coefficients
(δ0, δ1, δ2)

(1.311, -0.199, -0.083)

Sample size
PSC on X PSC on PCs

δ̂0 δ̂1 δ̂2 δ̂0 δ̂1 δ̂2

300
1.139 -0.177 -0.054 1.119 -0.179 -0.046

(0.092) (0.003) (0.005) (0.122) (0.005) (0.005)

400
1.149 -0.175 -0.061 1.118 -0.174 -0.052

(0.068) ( 0.003) (0.003) (0.108 ) (0.004) (0.005)

500
1.148 -0.175 -0.061 1.132 -0.175 -0.054

(0.063) (0.0002 (0.003) (0.003) (0.094) (0.004)

600
1.145 -0.175 -0.060 1.123 -0.174 -0.054
(0.06) (0.002) (0.002) (0.099) (0.003) (0.004)

6. Discussion

The results of two simulation studies are presented in the last section, and for each study we assess
two calibration approaches, the LC estimator using no explicit form of response function and the
PSC estimator with explicit functional form. Both estimators are evaluated using the original large
set of auxiliary variables (X) and using the principal components (PCs) of the original auxiliary
variables. The results of the first study are given in two versions, tabular and graphic, while the
results of the second study are given in tabular form only. The graphic form enables the convenient
visual inspection of the estimator behaviour, while the tabular form gives a quantitative illustration.
Study 1 demonstrates that the LC estimator based on principal components auxiliary variables is
always superior in terms of relative bias, standard error, and root mean squared error (RMSE), to
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its counterpart using the original auxiliary information. This is true regardless of the level of the
auxiliary information, that is, the population or sample levels, as demonstrated in Tables 1 and 2,
respectively.

There is a large discrepancy of the standard errors and RMSEs between population- and sample-
based LC estimators. The RMSE of the population-based LC estimator based on the original auxil-
iary information ranges from 6544 to 8661 while the range for its counterpart based on sample-level
auxiliary information is 13,134 to 22,660. The RMSE of the LC based on PCs auxiliary informa-
tion ranges from 1864 to 2094 and from 7626 to 11,206 for population- and sample-based auxiliary
information, respectively. Thus, the results differ greatly when comparing estimators of population-
and sample-based auxiliary information. Considerable differences are also observed in the standard
errors and RMSEs when comparing the estimators in terms of the type of auxiliary information
used, that is, original X- auxiliaries and PCs- auxiliaries. This is not a surprising behaviour of the
LC calibration estimator as this is a regression-type estimator.

In the response propensity calibration approach, auxiliary information is used in estimating re-
sponse propensities; the estimation of population characteristics then proceeds by adjusting the de-
sign weights through multiplication by the corresponding reciprocals of the estimated propensities,
which is usually called ‘double weighting’. Here, it is observed that these results are more consis-
tent. As Tables 3 and 4 illustrate, the principal-components-based estimator provides results similar
to those obtained using the original auxiliary information. This is true regardless of the level of
information on which the estimator is based. Furthermore, the results display consistency when
comparing the properties of the corresponding estimators when population- and sample-based aux-
iliary data are used. The corresponding interval ranges of the RMSEs when using population-level
auxiliary information are close to those when sample-level auxiliary information is used. As the
sample size increases, the RMSEs tend to converge to the same level, irrespective of the type (X or
PCs) or level (population or sample) of the auxiliary information. One of the major advantages of
using PCs in place of the original auxiliary variables is the computational effort measured in terms
of computational time; as reported in Tables 3–4, due to dimensionality reduction, the principal-
components-based estimates are computed much more quickly than are the estimates based on the
original auxiliary information.

Tables 5–10 report the results of the second simulation study. In contrast to the previous study,
here, the LC calibration (Tables 5–6) results are consistent regardless of the type of auxiliary infor-
mation used for estimation as well as when comparing the properties of the estimator across levels
of information. The RMSEs of the estimators lie in virtually the same interval, regardless of the
level of auxiliary information (population or sample levels) or type (original X or PCs) . A similar
observation can be made with respect to the PSC estimator in Tables 7–8. We can still compare
the performances of the LC and PSC estimators as we are using the same set of auxiliary variables,
however, the estimators are conceptually different in terms of how auxiliary information is used.

The levels of bias are approximately the same: they are less than 0.1% in study 2 while in study
1 some differences are observed, especially in the LC estimator where the bias level attains 5.5%, as
Tables 1 and 2 demonstrate. An interesting property of the auxiliary information in the PSC scheme,
is the ability to appropriately estimate the response model. Tables 9–10 provide the population- and
sample-based model-estimated coefficients, and the results suggest equally good model coefficients
estimates when PCs are used compared with estimates resulting from the use of the original X
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variables. As the results of model estimates are good, we can further improve the target estimates by
performing a two-step estimation in which the products of design weigths and the reciprocal of the
estimated response probabilities are used as initial weights in the linear calibration estimator.

Both study 1 and study 2 illustrate how the use of principal components in place of original
auxiliary data when adjusting for nonresponse does not lead to distorted results and has the great
advantage of reducing the computational effort.

The reported PSC results based on principal components are very similar to those obtained using
a fixed number of components via the eigenvalue-one rule. However, the eigenvalue-one results are
worse than those of our approach based on canonical correlation for very small samples. When the
sample size increases, the number of selected components converges to the number of components
based on the eigenvalue-one rule. The Figure 7 in the appendix illustrates the behaviour of our
components selection method using the data of the study 1.
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variables. As the results of model estimates are good, we can further improve the target estimates by
performing a two-step estimation in which the products of design weigths and the reciprocal of the
estimated response probabilities are used as initial weights in the linear calibration estimator.

Both study 1 and study 2 illustrate how the use of principal components in place of original
auxiliary data when adjusting for nonresponse does not lead to distorted results and has the great
advantage of reducing the computational effort.

The reported PSC results based on principal components are very similar to those obtained using
a fixed number of components via the eigenvalue-one rule. However, the eigenvalue-one results are
worse than those of our approach based on canonical correlation for very small samples. When the
sample size increases, the number of selected components converges to the number of components
based on the eigenvalue-one rule. The Figure 7 in the appendix illustrates the behaviour of our
components selection method using the data of the study 1.
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where Π1 = ∑k∈U ∑l∈U (πkl − πkπl)dkdlZkZt
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Alternatively, the calibration (8) is on estimated principal components, that is,

Ẑt
(r)Φ(δ )d(r)− T̂z = 0 (22)

where T̂ = ∑s dkẐk.
Observe that,
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The first variance component is zero, implying that
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therefore, the sample version analogous to (W) in (21) is W̃ = p lim
n→∞

1
n ∑U dk(h(Ht

kδ ∗)−1)ZkZt
k.

Appendix B: Figures
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Figure 3: LC on original population auxiliary variables vs. LC on population PCs – Study 1.
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The first variance component is zero, implying that

Epq

[(
Ẑt
(r)Φ(δ ∗)d(r)− T̂z

)(
Ẑt
(r)Φ(δ ∗)d(r)− T̂z

)t
]
= ∑U dk(h(Ht

kδ ∗)−1)ZkZt
k,

therefore, the sample version analogous to (W) in (21) is W̃ = p lim
n→∞

1
n ∑U dk(h(Ht

kδ ∗)−1)ZkZt
k.
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Figure 3: LC on original population auxiliary variables vs. LC on population PCs – Study 1.
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Figure 4: LC on original sample auxiliary variables vs. LC on sample PCs – Study 1.
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Figure 5: PSC on original population auxiliary variables vs. PSC on population PCs – Study 1.
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Figure 5: PSC on original population auxiliary variables vs. PSC on population PCs – Study 1.
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Figure 6: PSC on original sample auxiliary variables vs. PSC on sample PCs – Study 1.
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Figure 7: Behaviour of the number of selected components when sample sizes increase – Study 1.
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Figure 7: Behaviour of the number of selected components when sample sizes increase – Study 1.
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1 Introduction

In adjusting for nonresponse, weighting is a commonly used approach by sur-
vey methodologists. Weighting relies on auxiliary variables, which can be
defined as variables on which information is available for respondents and
nonrespondents. In weighting for nonresponse adjustment, the role of auxil-
iary variables is crucial in reducing nonresponse errors. Rizzo, Kalton, and
Brick (1996) noted that the selection of auxiliary variables could be more
important than the weighting scheme. Furthermore, Särndal (2011) claims
that in the case of bias inflation by nonresponse, access to powerful auxiliary
variables becomes key in minimizing the problem. These auxiliary variables
are required to predict (a) the propensities to respond and (b) the key survey
variables to adjust effectively for nonresponse (West and Little, 2012).

Use of auxiliary variables in estimation can be found in for example,
Bethlehem (1988), Estevão and Särndal (2000), Kalton and Flores-Cervantes
(2003), Särndal and Lundström (2005), and Särndal (2007). In practice, there
can be a wide choice of variables (Särndal and Lundström, 2008), and one
must decide on their selection for effective adjustment. The literature pro-
vides suggestions to guide the selection of auxiliary variables. Särndal and
Lundström (2008) propose a selection device based on the variability of the
reciprocals of estimated propensities. The propensities are determined under
the assumption that the auxiliary variables satisfy some pre-specified condi-
tion. Geuzinge, Rooijen and Bakker (2000) propose a selection indicator based
on a product of correlations arising from (a) and (b). In adjusting for non-
response using the regression estimator, Bethlehem and Schouten (2004) and
Schouten (2007) propose a selection based on minimizing a maximal absolute
bias of the estimator. The method relies on computing an interval for the
maximal absolute bias and selecting those variables that minimize its width.

Searching for auxiliary variables satisfying requirements (a) and (b) simul-
taneously can be a difficult task. Survey practices involve many variables of
interest; as Kott (2013) comments on Brick’s (2013) discussion paper, one can
seldom encounter auxiliary variables fulfilling (b) for every variable of interest
in a multipurpose survey. Kreuter and Olson (2011) also noted the same dif-
ficulty. Furthermore, as we illustrate with an example, fulfilling requirements
(a) and (b) simultaneously does not generally guaranty effectiveness in bias
protection for target estimates. Doing so can even introduce a larger bias. It
might not be appropriate to rely entirely on correlation relationships between
the variables involved in the study.

For adjustment methods in which the response behavior is explicitly mod-

2 | Bernardo João Rota

eled, the primary goal is in observing those variables that are linked to a
response pattern; thus, the estimation of targets is viewed as a second objec-
tive after the estimation of the response model. However, the approach is also
challenging in the sense that it is difficult or even impossible to guess the ap-
propriate response behavior when some can have simple forms, whereas others
are complex. Simple models such as the logit and probit models are usually
used to represent the true response model. We use a telephone survey case
to show that such simple models are adequate under very specific assumptions.

To produce good adjustment weights, weighting methods rely on the proper
use of available auxiliary information (e.g. Falk, 2012; Brick, 2013). We em-
phasize here weighting in two directions, that is, with and without an explicit
modelling of response function. Kim and Kim (2007) note that the weight-
ing procedures for nonresponse adjustment are mainly made by applying one
of the two approaches: weighting adjustment or direct weighting adjustment.
They are treated in the next two sections followed by a discussion of results
in the final section.

2 Weighting adjustment

In weighting adjustment, the auxiliary information is embedded into the es-
timation of targets, improving the efficiency of the resulting estimators. The
generalized regression (GREG) estimator is an example of this type of adjust-
ment.

Suppose a sample s = {1, 2, ..., k, ..., n} of size n is drawn from a popula-
tion U = {1, 2, ..., k, ..., N} of size N with a probability sampling design p(s),
yielding sample inclusion probabilities πk = Pr(k�s) > 0 and corresponding
design weights dk = 1/πk for all k ∈ U . Let y and x be the survey vari-
able of interest and an L-dimensional column vector of auxiliary variables,
respectively. We want to estimate Y =

∑
U yk.

Assume the following relationship between y and x, described through the
model:

ζ : yk = βtxk + εk, k = 1, .., N (1)

where β is an L-dimensional column vector of model parameters, and εk is a
zero-mean random variable with Vζ(εk) = σ2

k.

The generalized regression (GREG) estimators for Y based on the rela-
tionship between y and x given by equation (1) are a class of estimators of
the form

Bernardo João Rota | 3
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Ŷreg =

(∑
U

xk −
∑
s

dkxk

)t

B̂s +
∑
s

dkyk (2)

where B̂s = (
∑

s dkckxkx
t
k)

−1 ∑
s dkckxkyk and we assume ck = 1.

According to Cobben (2009), the GREG estimator was introduced by
Särndal (1980) and Bethlehem and Keller (1987). The GREG estimator (2)
is extensively studied in Särndal et al. (1992); its properties rely on the sam-
pling design and a close linear fit between y and x without explicitly depending
upon whether (1) is true. In this setting, the regression estimator (2) is deemed
model assisted rather than dependent (Särndal, 2007). The model-dependent
regression estimator is extensively reviewed in Fuller (2002). The regression es-
timator can be written in a simpler form as a weighted sum of the values of the
survey variable by writing (

∑
U xk −∑

s dkxk)
t
(
∑

s dkxkx
t
k)

−1 ∑
s dkxkyk as∑

s dkMkyk, whereMk = (
∑

U xk −∑
s dkxk)

t
(
∑

s dkxkx
t
k)

−1
xk. Thus, equa-

tion (2) becomes

Ŷreg =
∑
s

wkyk (3)

with wk = dk(1 +Mk).
This particular form of the regression estimator is advantageous because

the weights wk can be applied to any survey variable and have the following
property: ∑

s

wkxk =
∑
U

xk. (4)

Furthermore, when
∑

U xk can be constructed by summing xk in the sam-
pling frame, a number of regression estimators can be constructed. However,
observing xk, k = 1, .., N is not a requirement for the regression estimator
based on (1); it suffices to know only

∑
U xk, which can be information ob-

tained from other sources.
LettingM∗

k = (
∑

U xk −∑
s dkxk)

t
(
∑

s dkzkx
t
k)

−1
zk, where zk is a vector

of auxiliary variables conceptually different, but of the same dimension as xk,
we obtain the more general regression estimator given in (5). In this case, the
regression estimator resembles the instrumental variable regression estimator
learned from econometric theory.

ŶIV reg =

(∑
U

xk −
∑
s

dkxk

)t

B̂IV s +
∑
s

dkyk. (5)
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where B̂IV s = (
∑

s dkzkx
t
k)

−1 ∑
s dkzkyk.

In our case, where sampling is followed by nonresponse (e.g. An, 1996;
Fuller and An, 1998; Singh and Kumar, 2011), the GREG estimator (5) is
given by

ŶIV reg∗ =

(∑
U

xk −
∑
r

dkxk

)t

B̂IV r +
∑
r

dkyk (6)

where B̂IV r = (
∑

r dkzkx
t
k)

−1 ∑
r dkzkyk, and r is the set of respondents.

Let us assume that the condition λtzk = 1 holds for all k, where λ is a
constant vector. Equation (6) becomes

ŶIV reg∗ =
∑
U

xt
kB̂IV r (7)

The expected value of ŶIV reg∗ is approximately

E
(
ŶIV reg∗

)
≈

∑
U

xt
kBIV θ (8)

where BIV θ = (
∑

U θkxkz
t
k)

−1 ∑
U θkzkyk and θk = Pr(k�r|k�s).

Equation (8) says that the bias of the regression estimator almost en-
tirely depends upon the properties of the response-based regression coeffi-
cients B̂IV r. If all θk = 1, then the regression estimator is approximately
unbiased for

∑
U yk. The following interesting statement is given by Cobben

(2009): “Practical experience (at least in the Netherlands) shows that non-
response often seriously affects estimators like means and totals, but less of-
ten causes estimates of relationships to be biased. Particularly if relation-
ships are strong, i.e., the regression line fits the data well, the risk of finding
wrong relationships is small”. Furthermore, Särndal and Lundström (2005,
p. 100) shows the existence of the following relationship between BIV θ and

B = (
∑

U zkx
t
k)

−1 ∑
U zkyk:

BIV θ −B =

(∑
U

θkzkx
t
k

)−1 ∑
U

θkzkek (9)

where ek = yk − xt
kB.

Equation (9) says that estimator (7) is approximately unbiased for Y if the
linear fit between yk and xk is strong or the regression errors are uncorrelated
with the response probabilities. Thus, a need exists for strong relationships

Bernardo João Rota | 5
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between the explanatory variables, the response probabilities and the vari-
ables of interest.

• The auxiliary variable can introduce bias

Fuller and An (1998) emphasize that the level of bias reduction depends upon
the relationships between the auxiliary variable, the variable of interest, and
the response probability.

A question rarely raised in the literature can be formulated as follows:
how does weighting affect estimates if the response set mean is unbiased?
One potential reason for this problem not being addressed is the adaptation
of concepts on the relationship between the study variable and the genera-
tion of the response set from the model-based inference literature, e.g., MAR
(missing at random) and MCAR (missing completely at random) and ignor-
able and nonignorable nonresponse.

For estimation of population means or totals in the finite population frame-
work, such concepts can be misleading. MCAR is a stronger concept than
MAR, usually meaning that if MCAR holds, so does MAR. Methods derived
to handle MAR cases then also encompass MCAR cases. However, this mean-
ing might not hold in the finite population context for similar concepts; MCAR
might hold but not MAR.

If MCAR is defined as
∑

U θkyk = θ̄
∑

U yk and Ux ⊂ U , a subset e.g. de-
fined by values on auxiliary variables, then MCAR does not imply

∑
Ux

θkyk =

θ̄
∑

Ux
yk. The same argument can be derived by considering a random draw

from the population and observing y and R, where R is a response indicator
variable . Then MCAR, defined as F (y|R = 1) = F (y|R = 0), does not imply
F (y|R = 1, x) = F (y|R = 0, x), where F (·) denotes the cdf.

Consider the following relationships:

yk = β0 + β1xk + ek
θk = Pr(k�r|k�s) (10)

where

1.
∑

U ek = 0 and
∑

U xkek = 0

2.
∑

U θkxk �= θ̄
∑

U xk

6 | Bernardo João Rota

Here the auxiliary variable xk correlates with both the study variable (β1 �= 0)
and the response probability θk.

The approximate bias of the expanded Horvitz-Thompson estimator for
the total of y obtained from (6) by setting xk = zk = 1,

Ŷexp =
N∑
r dk

∑
r

dkyk

is given by

NearBias(Ŷexp) = N
E(

∑
r dkyk)

E(
∑

r dk)
−∑

U yk = N ·cov(θ,y)
θ̄

.

where cov(θ, y) denotes the covariance between θ and y in the population and
θ̄ is the population mean of θ. Thus, the expansion estimator is approximately
unbiased if cov(θ, y) is zero.

One special case of the regression estimator is the ratio estimator, which is
obtained from (6) by setting xk = xk and zk = 1. In the literature, the ratio
estimator is suggested to have smaller bias due to nonresponse than does the
expansion estimator. The approximate bias for the GREG estimator in this
case is given by

NearBias(ŶRA) =
N2x̄∑
U θkxk

· σθe (11)

where x̄ = N−1
∑

U xk, σθe = cov(θ, e), and in model (10), we assume β0 = 0.
Now, in this case, if cov(θ, y) = 0 then cov(θ, e) �= 0 and the expansion

estimator is approximately unbiased whilst the ratio estimator is not. Hence,
using auxiliary information in estimation introduces errors in estimates be-
cause of estimator bias.

Defining xk = zk = (1 xk)
t , equation (7) yields another well-known

estimator, the simple linear regression, which is also suggested to be more
efficient than the expansion estimator. In this case, the bias of the regression
estimator is given by:

NearBias(Ŷreg) = N
σxhσθe − σxθσhe

θ̄h̄x− h̄2
(12)

where hk = θkxk, σxh = cov(x, h), σhe = cov(h, e), σxθ = cov(x, θ), h̄2 =
(N−1

∑
U hk)

2, and h̄x = N−1
∑

U hkxk. Additionally, we no longer assume
β0 = 0 in (10). Again, if cov(θ, y) = 0 assumptions made imply cov(θ, e) �= 0
and the numerator in this bias expression cannot be claimed zero in general.
Thus, using auxiliary information via the regression estimator also yields a
biased estimator although the expansion estimator is approximately unbiased.
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∑
Ux

θkyk =

θ̄
∑

Ux
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∑
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∑
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∑
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∑
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Here the auxiliary variable xk correlates with both the study variable (β1 �= 0)
and the response probability θk.

The approximate bias of the expanded Horvitz-Thompson estimator for
the total of y obtained from (6) by setting xk = zk = 1,

Ŷexp =
N∑
r dk

∑
r

dkyk

is given by

NearBias(Ŷexp) = N
E(

∑
r dkyk)

E(
∑

r dk)
−∑

U yk = N ·cov(θ,y)
θ̄

.
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∑
U hk)

2, and h̄x = N−1
∑
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and the numerator in this bias expression cannot be claimed zero in general.
Thus, using auxiliary information via the regression estimator also yields a
biased estimator although the expansion estimator is approximately unbiased.
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Thus, the ratio and the linear regression estimators have nonzero approxi-
mate bias resulting from the choice of auxiliary variable whereas the expansion
estimator is approximately unbiased. The bias of the ratio estimator is pro-
portional to σθe whereas the approximate bias of the regression estimator is
a weighted sum of σθe and σθx. This might both reduce or increase bias
compared with the ratio estimator.

The NearBias expressions presented above shows that the recommendation
of selecting powerful auxiliary variables in the sense of being correlated with
variables of interest and response probability can introduce, instead of reduc-
ing bias due to nonresponse. The bias expression for the regression estimator
is more complex and a numerical example is used for illustration.
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Figure 1. Plot of study variable y against response probability θ.
(y obtained from a real data set (n = 5214) and θ = 0.05 + 0.95 · u

where u are independent U(0, 1) numbers.)

Figure 1 depicts 5214 values of a study variable y, obtained from real data.
To obtain a case where the expansion estimator is approximately unbiased re-
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sponse probabilities are independently generated from a uniform distribution
as θ = 0.05+0.95 ·u where u ∼ U(0, 1). The figure depicts a plot of y against
the generated response probabilities (θ). For the data in Figure 1, the total
of y is 51925.49 and the approximate relative bias of the expansion estimator
is 0.06%. The correlation between y and θ is cor(θ, y)=0.0034.

As an auxiliary variable, the variable x = θ + 0.1 · y + a · e is generated,
where a is a fixed number and e is generated from a standard normal distri-
bution. The correlations between x and the study variable and the response
probability, respectively, are controlled by the value of a.

Calculated approximate biases for the regression estimator are shown in
Table 1. In terms of correlations, the auxiliary variable x is strongest when
a = 0, where cor(x, θ) = 0.6082 and cor(x, y) = 0.7958. This case also
shows the largest bias, -10.05%. By increasing a the correlations cor(x, θ) and
cor(x, y) decrease and so does also the relative bias in absolute numbers.

The average response probability is 0.5223 for the data underlying the
results in Table 1. In two additional calculations, the average response prob-
abilities are increased to 0.698. In one of them cor(x, θ) and cor(x, y) are
similar to the ones in Table 1. In the other, cor(x, y) is larger and cor(x, θ)
is smaller compared with those in Table 1. However, both additional calcula-
tions give much smaller biases. In the case with a = 0, bias reduces to -3.76%
and -3.51%. Thus, the response rate is indicated an important determinant
of the potential bias introduced by using the regression estimator.

Table 1: Approximate relative bias of the regression estimator of the total of
the variable y depicted in Figure 1. Auxiliary variable generated as

x = θ + 0.1 · y + a · e where e is standard normal distributed.

a cor(x, θ) cor(x, y) Rel.Bias (%)
0 0.6082 0 .7958 -10.05
0.5 0.4167 0.5339 -4.35
1 0.2618 0.3286 -1.62
1.5 0.1871 0.2303 -0.78
2 0.1458 0.1759 -0.45

Note: y has total 51925.49 and standard

deviation 3.58. Approximate relative bias

of the expansion estimator is 0.06%
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3 Direct weighting adjustment

In direct weighting adjustment, it is assumed that the functional form of the
response probability is known and given by θk = p(·zk), where zk is a vector
of model variables. The primary goal is to estimate this function so that the
observed values of the target variable are double weighted, that is, each yk is
multiplied by dkθ̂

−1
k , where θ̂ estimates θ. The target population Y can then

be estimated by

Ŷnr =
∑
r

dkθ̂
−1
k yk. (13)

The estimator (13) is widely suggested in the literature of nonresponse
adjustment (see e.g. Chang and Kott, 2008; Kim and Park, 2010; Kim and

Riddles, 2012). The properties of Ŷnr are conditioned on the properties of θ̂.
For example, the consistency of Ŷnr depends in general on a correct specifi-
cation of the function θ. Thus, a wrongly specified θ leads to an inconsistent
Ŷnr estimator, in general. Given the limitation on knowledge of the response
mechanism (Särndal and Lundström, 2005), it is difficult to determine whether
a proposed response mechanism is the appropriate one. Simple models such
as the logit and probit models are often suggested and used in applications
(e.g. Chang and Kott, 2008). An immediate question is when such simple
models are appropriate?

Here we take on a process view with repeated contact attempts in a tele-
phone survey. Figure 2 below illustrates the possible outcomes in one attempt.
We also consider an attempt to make contact with a unit in the sample and
collect a response as a random trial. From this, calling can result in a contact
(c) with probability γ or in a failure to make contact (c̄) with probability
γ̄ = (1− γ).

Given a contact is made with a unit in the sample, it may result in a
response (r), a refusal to participate (r̄), or an agreement to call back later
(CL). Conditionally on c, let the probabilities of these outcomes be denoted
δr, δr̄, and δCL, respectively.

Factors affecting the probability of a contact include an incorrect telephone
number, the unit cannot at the time respond to a telephone call and, the
respondent is not willing to respond to a call from an unknown displayed
telephone number. If a contact is made, other factors are involved in a decision
to respond, refuse or agree to be contacted later. The presentation of the
survey, the topic of the survey and the time required to respond come into
play. Thus, Figure 2 indicate the probability of a response at one attempt to
be a function of two different probabilities which are determined by different
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factors and variables. The summarizing of terms for e.g. the probability of a
response into a simple function as the logistic cdf seems less appropriate.

The probabilities of the outcomes of the trial are Pr(r) = θ1 = γδr,
Pr(r̄) = θ2 = γδr̄, Pr(CL) = θ3 = γδCL, and Pr(c̄) = (1 − γ) = γ̄. If the
outcome of the trial is either a failure to make contact or an agreement to
call back, a second trial to obtain a response from the unit can be made. The
same potential outcomes are possible. For simplicity, it is here assumed that
given an agreement to call back later, contact is made in the next trial and
the outcome is either a response (r) or a nonresponse (r̄).

Trial (random)

c

r CL

r
r r CL c

r = response, r = refusal, CL = call later,
c = no contact, = probability of contact (c),

a = probability of outcome a given c

Figure 2: Tree diagram of potential outcome of a
contact trial in a telephone survey.

Now, consider a sequence of contact trials, and let Pt denote a column vec-
tor of probabilities of the outcomes (r,r̄, CL, c̄) after t trials. The sequence of
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trials can be modelled as a stochastic process with a transition matrix Γt which
includes probabilities of the outcomes at trial t given the outcome on trial t−1.

Then we can write Pt = ΓtPt−1(t ≥ 2) with P1 =
�
θ1 θ2 θ3 γ̄

�t
.

There is some information on the transition matrix restricting the values on
its entries. First, the response and nonresponse outcomes are both absorbing.
That is, if a response is obtained on trial t−1 we still have a response on trial
t, and similar for a nonresponse. Also, above the outcome CL is assumed to
yield either a response or a nonresponse in the following trial.

Suppose Γt = Γ2 for all t ≥ 2, and consider

Γ2 =

⎛
⎜⎜⎝

1 0 θ31 θ1
0 1 θ32 θ2
0 0 0 θ3
0 0 0 γ̄

⎞
⎟⎟⎠

The fourth column in the matrix equals P1, meaning that the conditional
probabilities in a trial following a series of no contacts are the same; they do
not change with the number of trials made earlier. The third column contains
the conditional probabilities of a response (θ31) or nonresponse (θ32) given the
outcome CL in the previous trial. The first and second columns are obtained
for the absorbing outcomes response and nonresponse, respectively.

With this model, the probabilities of the different outcomes can be ex-
pressed as Pt = Γt−1

2 P1, and letting the number of trials converge to infinity
yields the probability vector

P∞ =

⎛
⎜⎜⎝

δr + θ31δCL

δr̄ + θ32δCL

0
0

⎞
⎟⎟⎠

if γ̄ < 1.
This model gives a probability of a response from a unit being a function

of three unknown probabilities, i.e., Pr(r) = δr + θ31δCL. Again modeling
of response with e.g. the logit model is less appropriate with respect to the
expression obtained.

Adding the assumption δCL = 0 yields the traditional dichotomy of re-
sponse/nonresponse, suggesting modelling δr with e.g., a normal or a logistic
distribution function. The same modelling approach can also be motivated if
θ31 = 0.

A different case is obtained by setting θ31 = 1 whereby Pr(r) = δr + δCL,
and the modeling of Pr(r) using probit or logit models seem less appropriate.
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Rather, these models imply the modeling of nonresponse Pr(r̄) due to their
symmetry. With a distribution function F having a symmetric density and
Pr(r̄) = F (−xtα), then Pr(r) = 1 − Pr(r̄) = F (xtα). If the distribution is
asymmetric, modeling of nonresponse instead of response is more appropriate.

A final special case of interest is obtained with θ31 = δr/(δr + δr̄), which
corresponds to the independence of irrelevant alternative (IIA) assumption
underlying the multinomial logit model (e.g. McFadden, 1978). With this
specification, Pr(r) = δr/(δr + δr̄). Now suppose δa = eVa/(eVr + eVr̄ + eVCL)
(a ∈ {r, r̄}), where V· are nonrandom scalars. Then, Pr(r) = eVr/(eVr+eVr̄ ) =
eVD/(1 + eVD ), where VD = Vr − Vr̄, and the logit model is obtained.

In the discrete choice literature (e.g. McFadden, 1978), Vr, Vr̄ and VCL

represent systematic parts of the utilities of choosing alternatives r, r̄ and
CL, respectively. The utilities for the units are obtained by adding individual
specific components �a (a ∈ {r, r̄, CL}) yielding Ua = Va + �a. Under the
maximum utility paradigm, the unit selects the alternative yielding maximum
utility, that is, a unit responds if Ur > max(Ur̄, UCL).

Let x denote a vector characterizing the respondent and Va = xtαa such
that Ua = xtαa+�a (a ∈ {r, r̄, CL}). Suppose �a (a ∈ {r, r̄, CL}) are indepen-
dent and identically Gumbel distributed; then, Pr(r) = ex

tαD/(1 + ex
tαD ),

where αD = αr − αr̄ (e.g. McFadden, 1978). Again, the logit model is ob-
tained.

4 Discussion

Sampling theory shows how to utilize randomization to achieve valid, objective
inferences from empirical observations. Its application in the social sciences
and for official statistics production, however, is hampered by nonresponse
because the theory assumes observations are obtained for all units in the sam-
ple.

There are early suggestions on how to correct for nonresponse in which
the theory is applied in two or more steps. One example is the Hansen and
Hurwitz (1946) method, in which a subset of the set of nonrespondents is
sampled and measured. A similar idea is advanced by Bartholomew (1961).
Again, however, for these theories to work in practice, full response is required
when sampling from the subset of nonrespondents.

Later, the view of response as an outcome of a random trial was adopted.
Oh and Scheuren (1983) consider this interpretation a quasi-randomization
approach, treating the response set generated as a second sampling phase
with an unknown second-phase sampling design. The idea makes standard
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theory on estimation applicable by using estimated response probabilities.
In one direction, these response probabilities are estimated implicitly. In

this case, reliance is attributed to the ability of the auxiliary variables in
capturing response pattern given that these are also related to variables of
interest. There are many results in the literature showing this approach to be
successful in reducing bias due to nonresponse.

As pointed out earlier, auxiliary variables are generally used in attempt-
ing to achieve a MAR situation, a property that cannot be tested statistically.
Also, the example illustrated in Section 2, the dependence on the relation-
ships between the variables involved in the estimation can lead to undesired
effects. The use of auxiliary variables in an attempt to reduce bias due to
nonresponse can introduce a bias more severe than the one of the expansion
estimator. This is an issue usually not addressed in the literature and has to
be considered in future research.

Although our results point to the risk of introducing bias, the recommenda-
tion on using powerful auxiliary information still hold. If an auxiliary variable
is e.g. strongly and positively correlated with both the study variable and the
response probability, respectively, it implies a strong positive correlation be-
tween the study variable and the response probability as well. This follows by
the results of e.g. Olkin (1981); if two correlations in a trivariate distribution
are fixed, they bound the value on the third correlation. This result is also
used by Schouten (2007) for selection of auxiliary variables.

What is needed are new tools and methods which can be used for judg-
ing when it is appropriate to use the auxiliary information available. This
is an issue for future research and there are some ideas worthwhile studying.
One idea is to further consider restrictions on correlations in multivariate dis-
tributions. These can be used to bound the correlation between the study
variable and the response probability given estimates of the other correlations
involved. It is also possible to construct simple tests of a zero correlation, that
is, potential unbiasedness of the expansion estimator.

Another idea is to evaluate properties of estimators where the study vari-
able itself is assumed to directly affect the response probability. Examples are
the calibration estimators suggested by Chang and Kott (2008) and Särndal
and Lundström (2005). Another example is Heckman’s (1979) estimator for
the sample selection model.

In another direction, explicit models are used in representation of the true
response mechanism. Using a model by definition means use of approxima-
tions. A model cannot be assumed correct, and valid inference cannot be
guaranteed from its application. An essential part for valid inference is how
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well the model approximates the true response probabilities.
A popular response probability model is the binary logit model. Taking

on a process view on the sequence of contact trials in a telephone survey,
the example in Section 3 shows a response probability of a more complicated
structure than what is implied by the logit model. The response probability
obtained is defined by a function of three different probabilites. Thus, simple
models of response probabilities do not capture the complex process of at-
tempts to reach contacts and the choices of the units to respond or not. This
discrepancy is a source of bias in estimation, and new models capturing the
specific characteristics of the data collection process are of interest.

Graph models in combination with models for discrete choice data can
here provide new tools for modeling response probabilities. It is interesting
to note how contributions in the discrete choice literature can be adapted in
modeling response probabilities. In particular, theories describing individual
choice behavior is a source for improving model specifications.
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